-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
101 lines (77 loc) · 2.96 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import tqdm
import re
import matplotlib.pyplot as plt
import numpy as np
import time
import json
import warnings
from datetime import timedelta
import logging
logging.getLogger('tensorflow').disabled = True
import tensorflow as tf
import argparse
#tf.get_logger().setLevel('ERROR')
from gym_minigrid.wrappers import *
import numpy as np
from collections import deque
import PIL
import random
import matplotlib.pyplot as plt
import flloat
from flloat.parser.ltlf import LTLfParser
from models.run_test import *
from gym import wrappers
"""parsing and configuration"""
def parse_args():
desc = "Tensorflow 1.x Deep Reinforcemet Learning using Restraining Bolts [TESTING]"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--env', type=str, default='MiniGrid-Unlock-v0', help='choose gym enviroement')
parser.add_argument('--gui', type=bool, default=True, help='enable gui (nor recommended for training')
parser.add_argument('--model_name', type=str, default=None, help='path to model if starting from checkpoint')
parser.add_argument('--rand_seed', type=int, default=42, help='tf random seed')
parser.add_argument('--record', type=bool, default=False, help='video record attemps')
return parser.parse_args()
def main(args):
#algorithm
# algo -config
# parser -- RB
# asserttions
#
# train step
#checkpoitn loading
#checkpoitn saving
model_name = args.model_name
print("[*] proceeding to load model: {}".format(model_name))
model_dir = model_name
tf.reset_default_graph()
tf.random.set_random_seed(args.rand_seed)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
#config.log_device_placement = True
config.gpu_options.per_process_gpu_memory_fraction = 0.9
sess = tf.Session(config=config)
""" load env """
print("[*] attempting to load {} env".format(args.env))
assert args.env == model_name.split("/")[1].split("_algo")[0].split("env_")[1], "use the same env as the model"
env = gym.make(args.env)
print("[*] success")
if args.record:
#env = gym.wrappers.Monitor(env, args.record, resume = True)
env = gym.wrappers.Monitor(env, "./vid", video_callable=lambda episode_id: True,force=True)
print("recording")
algo = str(re.search(r'algo_(.*?)_', model_name).group(1))
print(type(algo))
supported_algorithms = ['dqn', 'ddqn', 'a2c', 'pompdp']
assert algo in supported_algorithms, "Unsupported Algorithm! Please choose a supported one: {}".format(*supported_algorithms)
""" main loop """
checkpoints_dir = '{}/checkpoints'.format(model_dir)
if algo in ['dqn', 'ddqn']:
run(sess=sess, env=env, algo=algo, checkpoints_dir = checkpoints_dir, gui=args.gui)
else:
run_a2c(sess=sess, env=env, algo=algo, checkpoints_dir = checkpoints_dir, gui=args.gui)
if __name__ == "__main__":
args = parse_args()
if args is None:
exit()
main(args)