-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
220 lines (168 loc) · 6.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import copy
import time
import math
import random
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import auc, precision_score, classification_report, plot_confusion_matrix, f1_score, confusion_matrix
from sklearn.neighbors import KNeighborsClassifier as KNN
from sklearn.svm import SVC as SVM
import torch
import torch.nn as nn
import torchvision
from torch.utils.data import Dataset,DataLoader
import torchvision.transforms as transforms
import torch.nn.functional as F
import utils
from utils.snapshot_ensemble import *
from utils.feature_selection import *
from utils.feature_ensemble import *
from utils.solution import *
from utils.dataset import *
from model import *
from PSO import *
import warnings
warnings.filterwarnings('ignore')
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_directory', type=str, default = './', help='Directory where the image data is stored')
parser.add_argument('--epochs', type=int, default = 100, help='Number of Epochs of training')
parser.add_argument('--batch_size', type=int, default = 4, help='Batch size for training')
parser.add_argument('--learning_rate', type=float, default = 0.0002, help='Learning Rate')
parser.add_argument('--momentum', type=float, default = 0.9, help='Momentum')
parser.add_argument('--num_clycles', type=int, default = 5, help='Number of cycles')
args = parser.parse_args()
########### snapshot ensembling phase ###########
# directory paths
DIR_PATH = args.data
if DIR_PATH[-1]=='/':
DIR_PATH = DIR_PATH[:-1]
TRAIN_DIR_PATH = os.path.join(DIR_PATH,'train')
VAL_DIR_PATH = os.path.join(DIR_PATH,'val')
# image transformations
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
transformations = {
'train' : transforms.Compose([
transforms.Resize((224,224)),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomAffine(degrees=(-180,180), translate=(0.1,0.1), scale=(0.9,1.1), shear=(-5,5)),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]),
'val' : transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
}
# getting the datasets
train_dataset = ImageFolderWithPaths(TRAIN_DIR_PATH,transform=transformations['train'])
val_dataset = ImageFolderWithPaths(VAL_DIR_PATH,transform=transformations['val'])
classes_to_idx = train_dataset.class_to_idx
print(f'Length of training dataset: {len(train_dataset)}')
print(f'Length of validation dataset: {len(val_dataset)}')
print(f'Classes in the dataset: {classes_to_idx}')
# hyperparameters
train_batch_size = args.batch_size
learning_rate_init = args.learning_rate
num_cycles = args.num_cycles
num_classes = len(classes_to_idx)
num_epochs = args.epochs
momentum = args.momentum
phases = ['training','validation']
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print('Device: ' + str(device))
# dataloaders
data_loader = {
'training' : DataLoader(dataset=train_dataset,
batch_size=train_batch_size,
shuffle=True,
num_workers=4),
'validation' : DataLoader(dataset=val_dataset,
batch_size=1,
shuffle=False,
num_workers=4)
}
for phase in phases:
print(f'Length of {phase} loader = {len(data_loader[phase])}')
# print data items from trainng dataloader
examples = iter(data_loader['training'])
images, labels, paths = examples.next()
print(f'Image shape: {images.shape} | Label shape: {labels.shape}') # batch_size=4
for path in paths:
print(os.path.basename(path))
print('---------------------------------------')
# defining model, loss function, optimizer
model = get_model(device, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate_init, momentum=momentum)
# print and test model
print("Model architecture:")
print(model)
test_model(model, device)
print('--------------------------------------')
# train model
start = time.time()
snapshots, history = train_model(model, criterion, optimizer, data_loader, num_epochs, num_cycles)
duration = time.time() - start
print(f'Training complete in {(duration // 60):.0f}mins {(duration % 60):.0f}s')
# plot training curves
plot_history(history)
print('----------------------------------------------------\n\n')
# extract features using model snapshot and save into csv
train_loader = DataLoader(dataset=train_dataset,
batch_size=1,
shuffle=False,
num_workers=4)
data_loader['training'] = train_loader
for idx, snapshot in enumerate(snapshots):
features, true_labels, img_paths = [], [], []
for phase in phases:
features, true_labels, img_paths = eval_model_extract_features(features, true_labels, img_paths, snapshot, idx, data_loader[phase], phase)
# convert tensors to numpy arrays
features, true_labels, img_paths = get_features(features,true_labels, img_paths)
# print(len(features),len(true_labels),len(img_paths))
# save to csv
ftrs_df = pd.DataFrame(features)
ftrs_df['label'] = true_labels.copy()
ftrs_df['filename'] = img_paths.copy()
ftrs_df.to_csv('outputs/snapshot_'+ str(idx+1) + '.csv',index=False)
print(f'feature set for model snapshot {idx+1} saved successfully !')
print('-----------------------------------------------------------\n\n')
########### feature selection process ###########
# feature set paths
SNAPSHOT_1 = 'outputs/snapshot_1.csv'
SNAPSHOT_2 = 'outputs/snapshot_2.csv'
SNAPSHOT_3 = 'outputs/snapshot_3.csv'
SNAPSHOT_4 = 'outputs/snapshot_4.csv'
SNAPSHOT_5 = 'outputs/snapshot_5.csv'
# get concatenated feature set
df_concat = get_feature_set()
print("Concatenated feature set sample:")
print(df_concat.head())
# shuffle train and test separately
train_size = int(len(df_concat) * 0.8)
train_df = df_concat[:train_size].copy()
test_df = df_concat[train_size:1+len(df_concat)].copy()
train_df = train_df.sample(frac=1)
test_df = test_df.sample(frac=1)
df_concat = pd.concat([train_df, test_df], axis=0)
# get data and labels (X and y)
X = df_concat.iloc[:,0:(df_concat.shape[1]-2)]
y = df_concat['label']
X = np.array(X)
y = np.array(y)
print(f'Feature set dimensions: {X.shape} \nNo. of labels: {y.shape[0]}')
print('----------------------------------------')
# perform Feature Selection on the feature set
soln_PSO, conv_gph_PSO = PSO(num_agents=40, max_iter=40, data=X, label=y)
# validate the feature selection algorithm
agent = soln_PSO.best_agent.copy()
cols = np.flatnonzero(agent)
validate_FS(X, y, agent, 'knn')
print('------------------------------------------------------')