From 8bb2bd479d030c60a9b2f51a4ac7b9cdf6139c2e Mon Sep 17 00:00:00 2001 From: Clare Shanahan Date: Thu, 28 Sep 2023 14:04:44 -0400 Subject: [PATCH] add fit_non_finite flag to model_fitting 1D (#2437) --- CHANGES.rst | 7 ++ .../plugins/model_fitting/fitting_backend.py | 5 +- .../plugins/model_fitting/model_fitting.py | 5 +- .../plugins/model_fitting/model_fitting.vue | 6 ++ .../model_fitting/tests/test_plugin.py | 53 ++++++++++++ jdaviz/configs/specviz/plugins/parsers.py | 85 ++++++++++++++----- jdaviz/core/template_mixin.py | 68 +++++++++++++++ 7 files changed, 204 insertions(+), 25 deletions(-) diff --git a/CHANGES.rst b/CHANGES.rst index badc187e52..62cdacaaf2 100644 --- a/CHANGES.rst +++ b/CHANGES.rst @@ -60,6 +60,13 @@ Specviz2d Other Changes and Additions --------------------------- +- Better handling of non-finite uncertainties in model fitting. The 'filter_non_finite' flag (for the + LevMarLSQFitter) now filters datapoints with non-finite weights. In Specviz, if a fully-finite spectrum + with non-finite uncertainties is loaded, the uncertainties will be dropped so every datapoint isn't + filtered. For other scenarios with non-finite uncertainties, there are appropriate warning messages + displayed to alert users that data points are being filtered because of non-finite uncertainties (when + flux is finite). [#2437] + 3.7.1 (unreleased) ================== diff --git a/jdaviz/configs/default/plugins/model_fitting/fitting_backend.py b/jdaviz/configs/default/plugins/model_fitting/fitting_backend.py index 538808dd6d..9c2bb75a78 100644 --- a/jdaviz/configs/default/plugins/model_fitting/fitting_backend.py +++ b/jdaviz/configs/default/plugins/model_fitting/fitting_backend.py @@ -75,7 +75,7 @@ def fit_model_to_spectrum(spectrum, component_list, expression, return _fit_1D(initial_model, spectrum, run_fitter, window=window) -def _fit_1D(initial_model, spectrum, run_fitter, window=None): +def _fit_1D(initial_model, spectrum, run_fitter, filter_non_finite=True, window=None): """ Fits an astropy CompoundModel to a Spectrum1D instance. @@ -104,7 +104,8 @@ def _fit_1D(initial_model, spectrum, run_fitter, window=None): weights = 'unc' else: weights = None - output_model = fit_lines(spectrum, initial_model, weights=weights, window=window) + output_model = fit_lines(spectrum, initial_model, weights=weights, + filter_non_finite=filter_non_finite, window=window) output_values = output_model(spectrum.spectral_axis) else: # Return without fitting. diff --git a/jdaviz/configs/default/plugins/model_fitting/model_fitting.py b/jdaviz/configs/default/plugins/model_fitting/model_fitting.py index 084bab4afd..ed01db6554 100644 --- a/jdaviz/configs/default/plugins/model_fitting/model_fitting.py +++ b/jdaviz/configs/default/plugins/model_fitting/model_fitting.py @@ -16,6 +16,7 @@ SubsetSelect, DatasetSelectMixin, DatasetSpectralSubsetValidMixin, + NonFiniteUncertaintyMismatchMixin, AutoTextField, AddResultsMixin, TableMixin) @@ -40,6 +41,7 @@ def __init__(self, value, unit=None): @tray_registry('g-model-fitting', label="Model Fitting", viewer_requirements='spectrum') class ModelFitting(PluginTemplateMixin, DatasetSelectMixin, SpectralSubsetSelectMixin, DatasetSpectralSubsetValidMixin, + NonFiniteUncertaintyMismatchMixin, AddResultsMixin, TableMixin): """ See the :ref:`Model Fitting Plugin Documentation ` for more details. @@ -312,7 +314,7 @@ def _warn_if_no_equation(self): def _get_1d_spectrum(self): # retrieves the 1d spectrum (accounting for spatial subset for cubeviz, if necessary) - return self.dataset.selected_spectrum_for_spatial_subset(self.spatial_subset_selected) # noqa + return self.dataset.selected_spectrum_for_spatial_subset(self.spatial_subset_selected) # noqa @observe("dataset_selected", "spatial_subset_selected") def _dataset_selected_changed(self, event=None): @@ -781,6 +783,7 @@ def calculate_fit(self, add_data=True): fitted spectrum/cube residuals (if ``residuals_calculate`` is set to ``True``) """ + if not self.spectral_subset_valid: valid, spec_range, subset_range = self._check_dataset_spectral_subset_valid(return_ranges=True) # noqa raise ValueError(f"spectral subset '{self.spectral_subset.selected}' {subset_range} is outside data range of '{self.dataset.selected}' {spec_range}") # noqa diff --git a/jdaviz/configs/default/plugins/model_fitting/model_fitting.vue b/jdaviz/configs/default/plugins/model_fitting/model_fitting.vue index c4fbd6773a..86fb4fbb91 100644 --- a/jdaviz/configs/default/plugins/model_fitting/model_fitting.vue +++ b/jdaviz/configs/default/plugins/model_fitting/model_fitting.vue @@ -289,6 +289,12 @@ + + + "Non-finite uncertainties exist in the selected data, these data points will be excluded from the fit." + + + diff --git a/jdaviz/configs/default/plugins/model_fitting/tests/test_plugin.py b/jdaviz/configs/default/plugins/model_fitting/tests/test_plugin.py index f8d092eca7..7b24c7278f 100644 --- a/jdaviz/configs/default/plugins/model_fitting/tests/test_plugin.py +++ b/jdaviz/configs/default/plugins/model_fitting/tests/test_plugin.py @@ -385,3 +385,56 @@ def test_invalid_subset(specviz_helper, spectrum1d): plugin.dataset = 'left_spectrum' assert plugin._obj.spectral_subset_valid + + +def test_all_nan_uncert(specviz_helper): + + # test that if you have a fully finite data array, and a fully nan/inf + # uncert array, that it is set to None and the fit proceeds (rather than + # being filtered in the fitter, as would normally happen with nans) + + uncertainty = StdDevUncertainty([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan] * u.Jy) + spec = Spectrum1D(flux=[1, 2, 3, 4, 5, 6]*u.Jy, uncertainty=uncertainty) + specviz_helper.load_data(spec) + + plugin = specviz_helper.plugins['Model Fitting'] + plugin.create_model_component('Linear1D') + + with pytest.warns(AstropyUserWarning, match='Model is linear in parameters'): + plugin.calculate_fit() + + # check that slope and intercept are fit correctly + plugin._obj.component_models[0]['parameters'][0]['value'] == 1.0 + plugin._obj.component_models[0]['parameters'][1]['value'] == 1.0 + + # and that this value is correctly set to false, even though there IS + # a mismatch, since its the entire array it will be reset + assert plugin._obj.non_finite_uncertainty_mismatch is False + + +def test_all_nan_uncert_subset(specviz_helper): + + # test that nans in uncertainty array are filtered from fit (contrary to + # what is tested in test_all_nan_uncert, when its not the entire array they + # SHOULD be filtered even when corresponding data values are finite), and that + # the `non_finite_uncertainty_mismatch` traitlet is True to trigger a warning + # message + + uncertainty = StdDevUncertainty([1, 1, np.nan, np.nan, np.nan, np.nan] * u.Jy) + spec = Spectrum1D(flux=[2, 4, 3, 4, 5, 6]*u.Jy, uncertainty=uncertainty) + specviz_helper.load_data(spec) + + plugin = specviz_helper.plugins['Model Fitting'] + plugin.create_model_component('Linear1D') + + with pytest.warns(AstropyUserWarning, match='Model is linear in parameters'): + plugin.calculate_fit() + + # check that slope and intercept are fit correctly to just the first 2 + # data points + plugin._obj.component_models[0]['parameters'][0]['value'] == 2.0 + plugin._obj.component_models[0]['parameters'][1]['value'] == 2.0 + + # # and that this value is correctly set to false, even though there IS + # # a mismatch, since its the entire array it will be reset + assert plugin._obj.non_finite_uncertainty_mismatch is True diff --git a/jdaviz/configs/specviz/plugins/parsers.py b/jdaviz/configs/specviz/plugins/parsers.py index 73c019060b..bc7d925669 100644 --- a/jdaviz/configs/specviz/plugins/parsers.py +++ b/jdaviz/configs/specviz/plugins/parsers.py @@ -6,9 +6,11 @@ from astropy.nddata import StdDevUncertainty from specutils import Spectrum1D, SpectrumList, SpectrumCollection +from jdaviz.core.events import SnackbarMessage from jdaviz.core.registries import data_parser_registry from jdaviz.utils import standardize_metadata + __all__ = ["specviz_spectrum1d_parser"] @@ -32,6 +34,7 @@ def specviz_spectrum1d_parser(app, data, data_label=None, format=None, show_in_v the extensions within each spectrum file passed to the parser and add a concatenated spectrum to the data collection. """ + spectrum_viewer_reference_name = app._jdaviz_helper._default_spectrum_viewer_reference_name # If no data label is assigned, give it a unique name if not data_label: @@ -41,8 +44,8 @@ def specviz_spectrum1d_parser(app, data, data_label=None, format=None, show_in_v raise TypeError("SpectrumCollection detected." " Please provide a Spectrum1D or SpectrumList") elif isinstance(data, Spectrum1D): - data = [data] data_label = [app.return_data_label(data_label, alt_name="specviz_data")] + data = [data] # No special processing is needed in this case, but we include it for completeness elif isinstance(data, SpectrumList): pass @@ -55,6 +58,7 @@ def specviz_spectrum1d_parser(app, data, data_label=None, format=None, show_in_v try: data = [Spectrum1D.read(str(path), format=format)] data_label = [app.return_data_label(data_label, alt_name="specviz_data")] + except IORegistryError: # Multi-extension files may throw a registry error data = SpectrumList.read(str(path), format=format) @@ -76,17 +80,57 @@ def specviz_spectrum1d_parser(app, data, data_label=None, format=None, show_in_v raise ValueError(f"Length of data labels list ({len(data_label)}) is different" f" than length of list of data ({len(data)})") - with app.data_collection.delay_link_manager_update(): # these are used to build a combined spectrum with all # input spectra included (taken from https://github.com/spacetelescope/ # dat_pyinthesky/blob/main/jdat_notebooks/MRS_Mstar_analysis/ # JWST_Mstar_dataAnalysis_analysis.ipynb) - wlallorig = [] - fnuallorig = [] - dfnuallorig = [] + wlallorig = [] # to collect wavelengths + fnuallorig = [] # fluxes + dfnuallorig = [] # and uncertanties (if present) + + for spec in data: + for wlind in range(len(spec.spectral_axis)): + wlallorig.append(spec.spectral_axis[wlind].value) + fnuallorig.append(spec.flux[wlind].value) + + # because some spec in the list might have uncertainties and + # others may not, if uncert is None, set to list of NaN. later, + # if the concatenated list of uncertanties is all nan (meaning + # they were all nan to begin with, or all None), it will be set + # to None on the final Spectrum1D + if spec.uncertainty[wlind] is not None: + dfnuallorig.append(spec.uncertainty[wlind].array) + else: + dfnuallorig.append(np.nan) + + # if the entire uncert. array is Nan and the data is not, model fitting won't + # work (more generally, if uncert[i] is nan/inf and flux[i] is not, fitting will + # fail, but just deal with the all nan case here since it is straightforward). + # set uncerts. to None if they are all nan/inf, and display a warning message. + set_nans_to_none = False + if isinstance(data, SpectrumList): + uncerts = dfnuallorig # alias these for clarity later on + if uncerts is not None and not np.any(uncerts): + uncerts = None + set_nans_to_none = True + else: + if data[0].uncertainty is not None: + uncerts_finite = np.isfinite(data[0].uncertainty.array) + if not np.any(uncerts_finite): + data[0].uncertainty = None + set_nans_to_none = True + + if set_nans_to_none: + # alert user that we have changed their all-nan uncertainty array to None + msg = 'All uncertainties are nonfinite, replacing with uncertainty=None.' + app.hub.broadcast(SnackbarMessage(msg, color="warning", sender=app)) + with app.data_collection.delay_link_manager_update(): for i, spec in enumerate(data): + # note: if SpectrumList, this is just going to be the last unit when + # combined in the next block. should put a check here to make sure + # units are all the same or collect them in a list? wave_units = spec.spectral_axis.unit flux_units = spec.flux.unit @@ -96,17 +140,8 @@ def specviz_spectrum1d_parser(app, data, data_label=None, format=None, show_in_v app.add_data(spec, data_label[i]) # handle display, with the SpectrumList special case in mind. - if show_in_viewer: - if isinstance(data, SpectrumList): - - # add spectrum to combined result - for wlind in range(len(spec.spectral_axis)): - wlallorig.append(spec.spectral_axis[wlind].value) - fnuallorig.append(spec.flux[wlind].value) - dfnuallorig.append(spec.uncertainty[wlind].array) - - elif i == 0: - app.add_data_to_viewer(spectrum_viewer_reference_name, data_label[i]) + if i == 0 and show_in_viewer: + app.add_data_to_viewer(spectrum_viewer_reference_name, data_label[i]) if concat_by_file and isinstance(data, SpectrumList): # If >1 spectra in the list were opened from the same FITS file, @@ -115,8 +150,9 @@ def specviz_spectrum1d_parser(app, data, data_label=None, format=None, show_in_v unique_files = group_spectra_by_filename(app.data_collection) for filename, datasets in unique_files.items(): if len(datasets) > 1: - spec = combine_lists_to_1d_spectrum(wlallorig, fnuallorig, dfnuallorig, - wave_units, flux_units) + spec = combine_lists_to_1d_spectrum(wlallorig, fnuallorig, + dfnuallorig, wave_units, + flux_units) # Make metadata layout conform with other viz. spec.meta = standardize_metadata(spec.meta) @@ -162,7 +198,7 @@ def combine_lists_to_1d_spectrum(wl, fnu, dfnu, wave_units, flux_units): Wavelength in each spectral channel fnu : list of `~astropy.units.Quantity`s Flux in each spectral channel - dfnu : list of `~astropy.units.Quantity`s + dfnu : list of `~astropy.units.Quantity`s or None Uncertainty on each flux Returns @@ -172,14 +208,19 @@ def combine_lists_to_1d_spectrum(wl, fnu, dfnu, wave_units, flux_units): """ wlallarr = np.array(wl) fnuallarr = np.array(fnu) - dfnuallarr = np.array(dfnu) srtind = np.argsort(wlallarr) + if dfnu is not None: + dfnuallarr = np.array(dfnu) + fnuallerr = dfnuallarr[srtind] wlall = wlallarr[srtind] fnuall = fnuallarr[srtind] - fnuallerr = dfnuallarr[srtind] # units are not being handled properly yet. - unc = StdDevUncertainty(fnuallerr * flux_units) + if dfnu is not None: + unc = StdDevUncertainty(fnuallerr * flux_units) + else: + unc = None + spec = Spectrum1D(flux=fnuall * flux_units, spectral_axis=wlall * wave_units, uncertainty=unc) return spec diff --git a/jdaviz/core/template_mixin.py b/jdaviz/core/template_mixin.py index 8bc251a661..d17608caf9 100644 --- a/jdaviz/core/template_mixin.py +++ b/jdaviz/core/template_mixin.py @@ -45,6 +45,7 @@ 'DatasetSpectralSubsetValidMixin', 'ViewerSelect', 'ViewerSelectMixin', 'LayerSelect', 'LayerSelectMixin', + 'NonFiniteUncertaintyMismatchMixin', 'DatasetSelect', 'DatasetSelectMixin', 'FileImportSelectPluginComponent', 'HasFileImportSelect', 'Table', 'TableMixin', @@ -1662,6 +1663,7 @@ class DatasetSpectralSubsetValidMixin(VuetifyTemplate, HubListener): @observe("dataset_selected", "spectral_subset_selected") def _check_dataset_spectral_subset_valid(self, event={}, return_ranges=False): + if self.spectral_subset_selected == "Entire Spectrum": self.spectral_subset_valid = True else: @@ -1677,6 +1679,72 @@ def _check_dataset_spectral_subset_valid(self, event={}, return_ranges=False): return self.spectral_subset_valid +class NonFiniteUncertaintyMismatchMixin(VuetifyTemplate, HubListener): + """Adds a traitlet that identifies if there are any finite data values + that correspond to a non-finite uncertainty at that index. + + In model fitting, the presence of finite, fittable data with corresponding + non-finite uncertainties can cause issues. Finite data values will be + filtered out in this case which may be undesirable. This traitlet when + True triggers a warning in the model fitting plugin (in Specviz only, + currently) if there are any finite values with non-finite uncertainties. + + Note that if a the uncertainty array is FULLY non-finite and the data is + FULLY finite, uncertainties will be set to None (in the Specviz parser), + so this traitlet will be False in that case (and therefore no warning + message displayed in the plugin). + """ + + non_finite_uncertainty_mismatch = Bool(False).tag(sync=True) + + # every time a data/subset selection is changed, check the data selection and + # its uncertainties to see if there are any finite data elements with + # uncertainties. Warn in plugin if this occurs. + + @observe("dataset_selected", "spectral_subset_selected") + def _check_non_finite_uncertainty_mismatch(self, event={}): + + if not hasattr(self, 'dataset') or self.dataset_selected == '': + # during initial init, this can trigger before the component is initialized + return + + if not hasattr(self, '_get_1d_spectrum'): + # only model_fitting has _get_1d_spectrum(), but this method is here + # instead of there because it may eventually be used by other plugins. + # if that happens, move _get_1d_spectrum() somewhere more general + raise NotImplementedError("_get_1d_spectrum() must be available in " + "plugin to use NonFiniteUncertaintyMismatchMixin") + + spec = self._get_1d_spectrum() + + if spec.uncertainty is None: + self.non_finite_uncertainty_mismatch = False + return + + if self.spectral_subset_selected == "Entire Spectrum": + flux = spec.flux + uncert = spec.uncertainty + else: + # get selected subset + spec = self._apply_subset_masks(self._get_1d_spectrum(), self.spectral_subset) + flux = spec.flux[~spec.mask] + uncert = spec.uncertainty[~spec.mask] + + uncert = uncert.array + + if not np.any(uncert): + self.non_finite_uncertainty_mismatch = False + return + + flux = flux.value + + mismatch = np.any(np.logical_and(~np.isfinite(uncert), np.isfinite(flux))) + + # np.any returns numpy bool type, which traitlets doesn't like + # so cast to boolean + self.non_finite_uncertainty_mismatch = bool(mismatch) + + class ViewerSelect(SelectPluginComponent): """ Plugin select for viewers, with support for single or multi-selection.