-
Notifications
You must be signed in to change notification settings - Fork 4
/
flow.c
1030 lines (907 loc) · 23.4 KB
/
flow.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Flow - walk the linearized flowgraph, simplifying it as we
* go along.
*
* Copyright (C) 2004 Linus Torvalds
*/
#include <string.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <assert.h>
#include "parse.h"
#include "expression.h"
#include "linearize.h"
#include "flow.h"
#include "target.h"
unsigned long bb_generation;
/*
* Dammit, if we have a phi-node followed by a conditional
* branch on that phi-node, we should damn well be able to
* do something about the source. Maybe.
*/
static int rewrite_branch(struct basic_block *bb,
struct basic_block **ptr,
struct basic_block *old,
struct basic_block *new)
{
if (*ptr != old || new == old || !bb->ep)
return 0;
/* We might find new if-conversions or non-dominating CSEs */
/* we may also create new dead cycles */
repeat_phase |= REPEAT_CSE | REPEAT_CFG_CLEANUP;
*ptr = new;
replace_bb_in_list(&bb->children, old, new, 1);
remove_bb_from_list(&old->parents, bb, 1);
add_bb(&new->parents, bb);
return 1;
}
/*
* Return the known truth value of a pseudo, or -1 if
* it's not known.
*/
static int pseudo_truth_value(pseudo_t pseudo)
{
switch (pseudo->type) {
case PSEUDO_VAL:
return !!pseudo->value;
case PSEUDO_REG: {
struct instruction *insn = pseudo->def;
/* A symbol address is always considered true.. */
if (insn->opcode == OP_SYMADDR && insn->target == pseudo)
return 1;
}
/* Fall through */
default:
return -1;
}
}
/*
* Does a basic block depend on the pseudos that "src" defines?
*/
static int bb_depends_on(struct basic_block *target, struct basic_block *src)
{
pseudo_t pseudo;
FOR_EACH_PTR(src->defines, pseudo) {
if (pseudo_in_list(target->needs, pseudo))
return 1;
} END_FOR_EACH_PTR(pseudo);
return 0;
}
/*
* This really should be handled by bb_depends_on()
* which efficiently check the dependence using the
* defines - needs liveness info. Problem is that
* there is no liveness done on OP_PHI & OP_PHISRC.
*
* This function add the missing dependency checks.
*/
static int bb_depends_on_phi(struct basic_block *target, struct basic_block *src)
{
struct instruction *insn;
FOR_EACH_PTR(src->insns, insn) {
if (!insn->bb)
continue;
if (insn->opcode != OP_PHI)
continue;
if (pseudo_in_list(target->needs, insn->target))
return 1;
} END_FOR_EACH_PTR(insn);
return 0;
}
/*
* When we reach here, we have:
* - a basic block that ends in a conditional branch and
* that has no side effects apart from the pseudos it
* may change.
* - the phi-node that the conditional branch depends on
* - full pseudo liveness information
*
* We need to check if any of the _sources_ of the phi-node
* may be constant, and not actually need this block at all.
*/
static int try_to_simplify_bb(struct basic_block *bb, struct instruction *first, struct instruction *second)
{
int changed = 0;
pseudo_t phi;
int bogus;
/*
* This a due to improper dominance tracking during
* simplify_symbol_usage()/conversion to SSA form.
* No sane simplification can be done when we have this.
*/
bogus = bb_list_size(bb->parents) != pseudo_list_size(first->phi_list);
FOR_EACH_PTR(first->phi_list, phi) {
struct instruction *def = phi->def;
struct basic_block *source, *target;
pseudo_t pseudo;
struct instruction *br;
int true;
if (!def)
continue;
source = def->bb;
pseudo = def->src1;
if (!pseudo || !source)
continue;
br = last_instruction(source->insns);
if (!br)
continue;
if (br->opcode != OP_CBR && br->opcode != OP_BR)
continue;
true = pseudo_truth_value(pseudo);
if (true < 0)
continue;
target = true ? second->bb_true : second->bb_false;
if (bb_depends_on(target, bb))
continue;
if (bb_depends_on_phi(target, bb))
continue;
changed |= rewrite_branch(source, &br->bb_true, bb, target);
changed |= rewrite_branch(source, &br->bb_false, bb, target);
if (changed && !bogus)
kill_use(THIS_ADDRESS(phi));
} END_FOR_EACH_PTR(phi);
return changed;
}
static int bb_has_side_effects(struct basic_block *bb)
{
struct instruction *insn;
FOR_EACH_PTR(bb->insns, insn) {
switch (insn->opcode) {
case OP_CALL:
/* FIXME! This should take "const" etc into account */
return 1;
case OP_STORE:
case OP_CONTEXT:
return 1;
case OP_ASM:
/* FIXME! This should take "volatile" etc into account */
return 1;
default:
continue;
}
} END_FOR_EACH_PTR(insn);
return 0;
}
static int simplify_phi_branch(struct basic_block *bb, struct instruction *br)
{
pseudo_t cond = br->cond;
struct instruction *def;
if (cond->type != PSEUDO_REG)
return 0;
def = cond->def;
if (def->bb != bb || def->opcode != OP_PHI)
return 0;
if (bb_has_side_effects(bb))
return 0;
return try_to_simplify_bb(bb, def, br);
}
static int simplify_branch_branch(struct basic_block *bb, struct instruction *br,
struct basic_block **target_p, int true)
{
struct basic_block *target = *target_p, *final;
struct instruction *insn;
int retval;
if (target == bb)
return 0;
insn = last_instruction(target->insns);
if (!insn || insn->opcode != OP_CBR || insn->cond != br->cond)
return 0;
/*
* Ahhah! We've found a branch to a branch on the same conditional!
* Now we just need to see if we can rewrite the branch..
*/
retval = 0;
final = true ? insn->bb_true : insn->bb_false;
if (bb_has_side_effects(target))
goto try_to_rewrite_target;
if (bb_depends_on(final, target))
goto try_to_rewrite_target;
if (bb_depends_on_phi(final, target))
return 0;
return rewrite_branch(bb, target_p, target, final);
try_to_rewrite_target:
/*
* If we're the only parent, at least we can rewrite the
* now-known second branch.
*/
if (bb_list_size(target->parents) != 1)
return retval;
insert_branch(target, insn, final);
return 1;
}
static int simplify_one_branch(struct basic_block *bb, struct instruction *br)
{
if (simplify_phi_branch(bb, br))
return 1;
return simplify_branch_branch(bb, br, &br->bb_true, 1) |
simplify_branch_branch(bb, br, &br->bb_false, 0);
}
static int simplify_branch_nodes(struct entrypoint *ep)
{
int changed = 0;
struct basic_block *bb;
FOR_EACH_PTR(ep->bbs, bb) {
struct instruction *br = last_instruction(bb->insns);
if (!br || br->opcode != OP_CBR)
continue;
changed |= simplify_one_branch(bb, br);
} END_FOR_EACH_PTR(bb);
return changed;
}
/*
* This is called late - when we have intra-bb liveness information..
*/
int simplify_flow(struct entrypoint *ep)
{
return simplify_branch_nodes(ep);
}
static inline void concat_user_list(struct pseudo_user_list *src, struct pseudo_user_list **dst)
{
concat_ptr_list((struct ptr_list *)src, (struct ptr_list **)dst);
}
void convert_instruction_target(struct instruction *insn, pseudo_t src)
{
pseudo_t target;
struct pseudo_user *pu;
/*
* Go through the "insn->users" list and replace them all..
*/
target = insn->target;
if (target == src)
return;
FOR_EACH_PTR(target->users, pu) {
if (*pu->userp != VOID) {
assert(*pu->userp == target);
*pu->userp = src;
}
} END_FOR_EACH_PTR(pu);
if (has_use_list(src))
concat_user_list(target->users, &src->users);
target->users = NULL;
}
void convert_load_instruction(struct instruction *insn, pseudo_t src)
{
convert_instruction_target(insn, src);
/* Turn the load into a no-op */
insn->opcode = OP_LNOP;
insn->bb = NULL;
}
static int overlapping_memop(struct instruction *a, struct instruction *b)
{
unsigned int a_start = bytes_to_bits(a->offset);
unsigned int b_start = bytes_to_bits(b->offset);
unsigned int a_size = a->size;
unsigned int b_size = b->size;
if (a_size + a_start <= b_start)
return 0;
if (b_size + b_start <= a_start)
return 0;
return 1;
}
static inline int same_memop(struct instruction *a, struct instruction *b)
{
return a->offset == b->offset && a->size == b->size;
}
static inline int distinct_symbols(pseudo_t a, pseudo_t b)
{
if (a->type != PSEUDO_SYM)
return 0;
if (b->type != PSEUDO_SYM)
return 0;
return a->sym != b->sym;
}
/*
* Return 1 if "dom" dominates the access to "pseudo"
* in "insn".
*
* Return 0 if it doesn't, and -1 if you don't know.
*/
int dominates(pseudo_t pseudo, struct instruction *insn, struct instruction *dom, int local)
{
int opcode = dom->opcode;
if (opcode == OP_CALL || opcode == OP_ENTRY)
return local ? 0 : -1;
if (opcode != OP_LOAD && opcode != OP_STORE)
return 0;
if (dom->src != pseudo) {
if (local)
return 0;
/* We don't think two explicitly different symbols ever alias */
if (distinct_symbols(insn->src, dom->src))
return 0;
/* We could try to do some alias analysis here */
return -1;
}
if (!same_memop(insn, dom)) {
if (dom->opcode == OP_LOAD)
return 0;
if (!overlapping_memop(insn, dom))
return 0;
return -1;
}
return 1;
}
static int phisrc_in_bb(struct pseudo_list *list, struct basic_block *bb)
{
pseudo_t p;
FOR_EACH_PTR(list, p) {
if (p->def->bb == bb)
return 1;
} END_FOR_EACH_PTR(p);
return 0;
}
static int find_dominating_parents(pseudo_t pseudo, struct instruction *insn,
struct basic_block *bb, unsigned long generation, struct pseudo_list **dominators,
int local)
{
struct basic_block *parent;
if (!bb->parents)
return !!local;
FOR_EACH_PTR(bb->parents, parent) {
struct instruction *one;
struct instruction *br;
pseudo_t phi;
FOR_EACH_PTR_REVERSE(parent->insns, one) {
int dominance;
if (one == insn)
goto no_dominance;
dominance = dominates(pseudo, insn, one, local);
if (dominance < 0) {
if (one->opcode == OP_LOAD)
continue;
return 0;
}
if (!dominance)
continue;
goto found_dominator;
} END_FOR_EACH_PTR_REVERSE(one);
no_dominance:
if (parent->generation == generation)
continue;
parent->generation = generation;
if (!find_dominating_parents(pseudo, insn, parent, generation, dominators, local))
return 0;
continue;
found_dominator:
if (dominators && phisrc_in_bb(*dominators, parent))
continue;
br = delete_last_instruction(&parent->insns);
phi = alloc_phi(parent, one->target, one->size);
phi->ident = phi->ident ? : pseudo->ident;
add_instruction(&parent->insns, br);
use_pseudo(insn, phi, add_pseudo(dominators, phi));
} END_FOR_EACH_PTR(parent);
return 1;
}
/*
* We should probably sort the phi list just to make it easier to compare
* later for equality.
*/
void rewrite_load_instruction(struct instruction *insn, struct pseudo_list *dominators)
{
pseudo_t new, phi;
/*
* Check for somewhat common case of duplicate
* phi nodes.
*/
new = first_pseudo(dominators)->def->src1;
FOR_EACH_PTR(dominators, phi) {
if (new != phi->def->src1)
goto complex_phi;
new->ident = new->ident ? : phi->ident;
} END_FOR_EACH_PTR(phi);
/*
* All the same pseudo - mark the phi-nodes unused
* and convert the load into a LNOP and replace the
* pseudo.
*/
FOR_EACH_PTR(dominators, phi) {
kill_instruction(phi->def);
} END_FOR_EACH_PTR(phi);
convert_load_instruction(insn, new);
return;
complex_phi:
/* We leave symbol pseudos with a bogus usage list here */
if (insn->src->type != PSEUDO_SYM)
kill_use(&insn->src);
insn->opcode = OP_PHI;
insn->phi_list = dominators;
}
static int find_dominating_stores(pseudo_t pseudo, struct instruction *insn,
unsigned long generation, int local)
{
struct basic_block *bb = insn->bb;
struct instruction *one, *dom = NULL;
struct pseudo_list *dominators;
int partial;
/* Unreachable load? Undo it */
if (!bb) {
insn->opcode = OP_LNOP;
return 1;
}
partial = 0;
FOR_EACH_PTR(bb->insns, one) {
int dominance;
if (one == insn)
goto found;
dominance = dominates(pseudo, insn, one, local);
if (dominance < 0) {
/* Ignore partial load dominators */
if (one->opcode == OP_LOAD)
continue;
dom = NULL;
partial = 1;
continue;
}
if (!dominance)
continue;
dom = one;
partial = 0;
} END_FOR_EACH_PTR(one);
/* Whaa? */
warning(pseudo->sym->pos, "unable to find symbol read");
return 0;
found:
if (partial)
return 0;
if (dom) {
convert_load_instruction(insn, dom->target);
return 1;
}
/* OK, go find the parents */
bb->generation = generation;
dominators = NULL;
if (!find_dominating_parents(pseudo, insn, bb, generation, &dominators, local))
return 0;
/* This happens with initial assignments to structures etc.. */
if (!dominators) {
if (!local)
return 0;
check_access(insn);
convert_load_instruction(insn, value_pseudo(0));
return 1;
}
/*
* If we find just one dominating instruction, we
* can turn it into a direct thing. Otherwise we'll
* have to turn the load into a phi-node of the
* dominators.
*/
rewrite_load_instruction(insn, dominators);
return 1;
}
static void kill_store(struct instruction *insn)
{
if (insn) {
insn->bb = NULL;
insn->opcode = OP_SNOP;
kill_use(&insn->target);
}
}
/* Kill a pseudo that is dead on exit from the bb */
static void kill_dead_stores(pseudo_t pseudo, unsigned long generation, struct basic_block *bb, int local)
{
struct instruction *insn;
struct basic_block *parent;
if (bb->generation == generation)
return;
bb->generation = generation;
FOR_EACH_PTR_REVERSE(bb->insns, insn) {
int opcode = insn->opcode;
if (opcode != OP_LOAD && opcode != OP_STORE) {
if (local)
continue;
if (opcode == OP_CALL)
return;
continue;
}
if (insn->src == pseudo) {
if (opcode == OP_LOAD)
return;
kill_store(insn);
continue;
}
if (local)
continue;
if (insn->src->type != PSEUDO_SYM)
return;
} END_FOR_EACH_PTR_REVERSE(insn);
FOR_EACH_PTR(bb->parents, parent) {
struct basic_block *child;
FOR_EACH_PTR(parent->children, child) {
if (child && child != bb)
return;
} END_FOR_EACH_PTR(child);
kill_dead_stores(pseudo, generation, parent, local);
} END_FOR_EACH_PTR(parent);
}
/*
* This should see if the "insn" trivially dominates some previous store, and kill the
* store if unnecessary.
*/
static void kill_dominated_stores(pseudo_t pseudo, struct instruction *insn,
unsigned long generation, struct basic_block *bb, int local, int found)
{
struct instruction *one;
struct basic_block *parent;
/* Unreachable store? Undo it */
if (!bb) {
kill_store(insn);
return;
}
if (bb->generation == generation)
return;
bb->generation = generation;
FOR_EACH_PTR_REVERSE(bb->insns, one) {
int dominance;
if (!found) {
if (one != insn)
continue;
found = 1;
continue;
}
dominance = dominates(pseudo, insn, one, local);
if (!dominance)
continue;
if (dominance < 0)
return;
if (one->opcode == OP_LOAD)
return;
kill_store(one);
} END_FOR_EACH_PTR_REVERSE(one);
if (!found) {
warning(bb->pos, "Unable to find instruction");
return;
}
FOR_EACH_PTR(bb->parents, parent) {
struct basic_block *child;
FOR_EACH_PTR(parent->children, child) {
if (child && child != bb)
return;
} END_FOR_EACH_PTR(child);
kill_dominated_stores(pseudo, insn, generation, parent, local, found);
} END_FOR_EACH_PTR(parent);
}
void check_access(struct instruction *insn)
{
pseudo_t pseudo = insn->src;
if (insn->bb && pseudo->type == PSEUDO_SYM) {
int offset = insn->offset, bit = bytes_to_bits(offset) + insn->size;
struct symbol *sym = pseudo->sym;
if (sym->bit_size > 0 && (offset < 0 || bit > sym->bit_size))
warning(insn->pos, "invalid access %s '%s' (%d %d)",
offset < 0 ? "below" : "past the end of",
show_ident(sym->ident), offset,
bits_to_bytes(sym->bit_size));
}
}
static void simplify_one_symbol(struct entrypoint *ep, struct symbol *sym)
{
pseudo_t pseudo;
struct pseudo_user *pu;
unsigned long mod;
int all;
/* Never used as a symbol? */
pseudo = sym->pseudo;
if (!pseudo)
return;
/* We don't do coverage analysis of volatiles.. */
if (sym->ctype.modifiers & MOD_VOLATILE)
return;
/* ..and symbols with external visibility need more care */
mod = sym->ctype.modifiers & (MOD_NONLOCAL | MOD_STATIC | MOD_ADDRESSABLE);
if (mod)
goto external_visibility;
FOR_EACH_PTR(pseudo->users, pu) {
/* We know that the symbol-pseudo use is the "src" in the instruction */
struct instruction *insn = pu->insn;
switch (insn->opcode) {
case OP_STORE:
break;
case OP_LOAD:
break;
case OP_SYMADDR:
if (!insn->bb)
continue;
mod |= MOD_ADDRESSABLE;
goto external_visibility;
case OP_NOP:
case OP_SNOP:
case OP_LNOP:
case OP_PHI:
continue;
default:
warning(sym->pos, "symbol '%s' pseudo used in unexpected way", show_ident(sym->ident));
}
} END_FOR_EACH_PTR(pu);
external_visibility:
all = 1;
FOR_EACH_PTR_REVERSE(pseudo->users, pu) {
struct instruction *insn = pu->insn;
if (insn->opcode == OP_LOAD)
all &= find_dominating_stores(pseudo, insn, ++bb_generation, !mod);
} END_FOR_EACH_PTR_REVERSE(pu);
/* If we converted all the loads, remove the stores. They are dead */
if (all && !mod) {
FOR_EACH_PTR(pseudo->users, pu) {
struct instruction *insn = pu->insn;
if (insn->opcode == OP_STORE)
kill_store(insn);
} END_FOR_EACH_PTR(pu);
} else {
/*
* If we couldn't take the shortcut, see if we can at least kill some
* of them..
*/
FOR_EACH_PTR(pseudo->users, pu) {
struct instruction *insn = pu->insn;
if (insn->opcode == OP_STORE)
kill_dominated_stores(pseudo, insn, ++bb_generation, insn->bb, !mod, 0);
} END_FOR_EACH_PTR(pu);
if (!(mod & (MOD_NONLOCAL | MOD_STATIC))) {
struct basic_block *bb;
FOR_EACH_PTR(ep->bbs, bb) {
if (!bb->children)
kill_dead_stores(pseudo, ++bb_generation, bb, !mod);
} END_FOR_EACH_PTR(bb);
}
}
return;
}
void simplify_symbol_usage(struct entrypoint *ep)
{
pseudo_t pseudo;
FOR_EACH_PTR(ep->accesses, pseudo) {
simplify_one_symbol(ep, pseudo->sym);
} END_FOR_EACH_PTR(pseudo);
}
static void mark_bb_reachable(struct basic_block *bb, unsigned long generation)
{
struct basic_block *child;
if (bb->generation == generation)
return;
bb->generation = generation;
FOR_EACH_PTR(bb->children, child) {
mark_bb_reachable(child, generation);
} END_FOR_EACH_PTR(child);
}
static void kill_defs(struct instruction *insn)
{
pseudo_t target = insn->target;
if (!has_use_list(target))
return;
if (target->def != insn)
return;
convert_instruction_target(insn, VOID);
}
void kill_bb(struct basic_block *bb)
{
struct instruction *insn;
struct basic_block *child, *parent;
FOR_EACH_PTR(bb->insns, insn) {
kill_instruction_force(insn);
kill_defs(insn);
/*
* We kill unreachable instructions even if they
* otherwise aren't "killable" (e.g. volatile loads)
*/
} END_FOR_EACH_PTR(insn);
bb->insns = NULL;
FOR_EACH_PTR(bb->children, child) {
remove_bb_from_list(&child->parents, bb, 0);
} END_FOR_EACH_PTR(child);
bb->children = NULL;
FOR_EACH_PTR(bb->parents, parent) {
remove_bb_from_list(&parent->children, bb, 0);
} END_FOR_EACH_PTR(parent);
bb->parents = NULL;
}
void kill_unreachable_bbs(struct entrypoint *ep)
{
struct basic_block *bb;
unsigned long generation = ++bb_generation;
mark_bb_reachable(ep->entry->bb, generation);
FOR_EACH_PTR(ep->bbs, bb) {
if (bb->generation == generation)
continue;
/* Mark it as being dead */
kill_bb(bb);
bb->ep = NULL;
DELETE_CURRENT_PTR(bb);
} END_FOR_EACH_PTR(bb);
PACK_PTR_LIST(&ep->bbs);
}
static int rewrite_parent_branch(struct basic_block *bb, struct basic_block *old, struct basic_block *new)
{
int changed = 0;
struct instruction *insn = last_instruction(bb->insns);
if (!insn)
return 0;
/* Infinite loops: let's not "optimize" them.. */
if (old == new)
return 0;
switch (insn->opcode) {
case OP_CBR:
changed |= rewrite_branch(bb, &insn->bb_false, old, new);
/* fall through */
case OP_BR:
changed |= rewrite_branch(bb, &insn->bb_true, old, new);
assert(changed);
return changed;
case OP_SWITCH: {
struct multijmp *jmp;
FOR_EACH_PTR(insn->multijmp_list, jmp) {
changed |= rewrite_branch(bb, &jmp->target, old, new);
} END_FOR_EACH_PTR(jmp);
assert(changed);
return changed;
}
default:
return 0;
}
}
static struct basic_block * rewrite_branch_bb(struct basic_block *bb, struct instruction *br)
{
struct basic_block *parent;
struct basic_block *target = br->bb_true;
struct basic_block *false = br->bb_false;
if (br->opcode == OP_CBR) {
pseudo_t cond = br->cond;
if (cond->type != PSEUDO_VAL)
return NULL;
target = cond->value ? target : false;
}
/*
* We can't do FOR_EACH_PTR() here, because the parent list
* may change when we rewrite the parent.
*/
while ((parent = first_basic_block(bb->parents)) != NULL) {
if (!rewrite_parent_branch(parent, bb, target))
return NULL;
}
return target;
}
static void vrfy_bb_in_list(struct basic_block *bb, struct basic_block_list *list)
{
if (bb) {
struct basic_block *tmp;
int no_bb_in_list = 0;
FOR_EACH_PTR(list, tmp) {
if (bb == tmp)
return;
} END_FOR_EACH_PTR(tmp);
assert(no_bb_in_list);
}
}
static void vrfy_parents(struct basic_block *bb)
{
struct basic_block *tmp;
FOR_EACH_PTR(bb->parents, tmp) {
vrfy_bb_in_list(bb, tmp->children);
} END_FOR_EACH_PTR(tmp);
}
static void vrfy_children(struct basic_block *bb)
{
struct basic_block *tmp;
struct instruction *br = last_instruction(bb->insns);
if (!br) {
assert(!bb->children);
return;
}
switch (br->opcode) {
struct multijmp *jmp;
case OP_CBR:
vrfy_bb_in_list(br->bb_false, bb->children);
/* fall through */
case OP_BR:
vrfy_bb_in_list(br->bb_true, bb->children);
break;
case OP_SWITCH:
case OP_COMPUTEDGOTO:
FOR_EACH_PTR(br->multijmp_list, jmp) {
vrfy_bb_in_list(jmp->target, bb->children);
} END_FOR_EACH_PTR(jmp);
break;
default:
break;
}
FOR_EACH_PTR(bb->children, tmp) {
vrfy_bb_in_list(bb, tmp->parents);
} END_FOR_EACH_PTR(tmp);
}
static void vrfy_bb_flow(struct basic_block *bb)
{
vrfy_children(bb);
vrfy_parents(bb);
}
void vrfy_flow(struct entrypoint *ep)
{
struct basic_block *bb;
struct basic_block *entry = ep->entry->bb;
FOR_EACH_PTR(ep->bbs, bb) {
if (bb == entry)
entry = NULL;
vrfy_bb_flow(bb);
} END_FOR_EACH_PTR(bb);
assert(!entry);
}
void pack_basic_blocks(struct entrypoint *ep)
{
struct basic_block *bb;
/* See if we can merge a bb into another one.. */
FOR_EACH_PTR(ep->bbs, bb) {
struct instruction *first, *insn;
struct basic_block *parent, *child, *last;
if (!bb_reachable(bb))
continue;
/*
* Just a branch?
*/
FOR_EACH_PTR(bb->insns, first) {
if (!first->bb)
continue;
switch (first->opcode) {
case OP_NOP: case OP_LNOP: case OP_SNOP:
continue;
case OP_CBR:
case OP_BR: {
struct basic_block *replace;
replace = rewrite_branch_bb(bb, first);
if (replace) {
kill_bb(bb);
goto no_merge;
}
}
/* fallthrough */
default:
goto out;
}
} END_FOR_EACH_PTR(first);
out:
/*
* See if we only have one parent..
*/
last = NULL;
FOR_EACH_PTR(bb->parents, parent) {
if (last) {
if (last != parent)
goto no_merge;
continue;
}
last = parent;
} END_FOR_EACH_PTR(parent);
parent = last;
if (!parent || parent == bb)
continue;
/*
* Goodie. See if the parent can merge..
*/
FOR_EACH_PTR(parent->children, child) {
if (child != bb)
goto no_merge;
} END_FOR_EACH_PTR(child);