-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathfwblkslv.c
320 lines (308 loc) · 12.4 KB
/
fwblkslv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*
y = fwblkslv(L,b, [y])
Given block sparse Cholesky structure L, as generated by
SPARCHOL, this solves the equation "L.L * y = b(L.perm,:)",
i.e. y = L.L\b(L.perm,:). The diagonal of L.L is taken to
be all-1, i.e. it uses eye(n) + tril(L.L,-1).
If b is SPARSE, then the 3rd argument (y) must give the sparsity
structure of the output variable y.
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include <string.h>
#include "mex.h"
#include "blksdp.h"
#define Y_OUT plhs[0]
#define NPAROUT 1
#define L_IN prhs[0]
#define B_IN prhs[1]
#define MINNPARIN 2
#define Y_IN prhs[2]
#define NPARIN 3
/*typedef struct{
const double *pr, *pi;
const mwIndex *jc, *ir;
} jcir;*/
/* ============================================================
FORWARD SOLVE:
============================================================ */
/* ************************************************************
PROCEDURE fwsolve -- Solve ynew from L*y = yold, where
L is lower-triangular.
INPUT
L - sparse lower triangular matrix
xsuper - starting column in L for each (dense) supernode.
nsuper - number of super nodes
UPDATED
y - full vector, on input y = rhs, on output y = L\rhs.
WORK
fwork - length max(collen[i] - superlen[i]) <= m-1, where
collen[i] := L.jc[xsuper[i]+1]-L.jc[xsuper[i]] and
superlen[i] := xsuper[i+1]-xsuper[i].
************************************************************ */
void fwsolve(double *y, const mwIndex *Ljc, const mwIndex *Lir, const double *Lpr,
const mwIndex *xsuper, const mwIndex nsuper, double *fwork)
{
mwIndex jsup,i,j,inz,jnnz;
double yi,yj;
/* ------------------------------------------------------------
For each supernode jsup:
------------------------------------------------------------ */
j = xsuper[0]; /* 1st col of current snode (j=0)*/
inz = Ljc[0]; /* 1st nonzero in L (inz = 0) */
for(jsup = 1; jsup <= nsuper; jsup++){
/* ------------------------------------------------------------
The first equation, 1*y=b(j), yields y(j) = b(j).
------------------------------------------------------------ */
mxAssert(inz == Ljc[j],"");
yj = y[j++];
++inz; /* jump over diagonal entry */
if(j >= xsuper[jsup])
/* ------------------------------------------------------------
If supernode is singleton, then simply set y(j+1:m)-=yj*L(j+1:m,j)
------------------------------------------------------------ */
for(; inz < Ljc[j]; inz++)
y[Lir[inz]] -= yj * Lpr[inz];
else{
/* ------------------------------------------------------------
Supernode contains multiple subnodes:
Remember (i,yi) = 1st subnode, then
perform dense forward solve within current supernode.
------------------------------------------------------------ */
i = j;
yi = yj;
do{
subscalarmul(y+j, yj, Lpr+inz, xsuper[jsup] - j);
inz = Ljc[j];
yj = y[j++];
++inz; /* jump over diagonal entry */
} while(j < xsuper[jsup]);
jnnz = Ljc[j] - inz;
/* ------------------------------------------------------------
jnnz = number of later entries that are influenced by this supernode.
Compute the update in the array fwork(jnnz)
------------------------------------------------------------ */
if(jnnz > 0){
scalarmul(fwork, yj, Lpr+inz,jnnz);
while(i < j){
addscalarmul(fwork,yi,Lpr+Ljc[i]-jnnz,jnnz);
yi = y[i++];
}
/* ------------------------------------------------------------
Update y with fwork at the specified sparse locations
------------------------------------------------------------ */
for(i = 0; i < jnnz; i++)
y[Lir[inz++]] -= fwork[i];
}
}
}
}
/* ************************************************************
PROCEDURE selfwsolve -- Solve ynew from L*y = yold, where
L is lower-triangular and y is SPARSE.
INPUT
L - sparse lower triangular matrix
xsuper - length nsuper+1, start of each (dense) supernode.
nsuper - number of super nodes
snode - length m array, mapping each node to the supernode containing it.
yir - length ynnz array, listing all possible nonzeros entries in y.
ynnz - number of nonzeros in y (from symbfwslv).
UPDATED
y - full vector, on input y = rhs, on output y = L\rhs.
only the yir(0:ynnz-1) entries are used and defined.
************************************************************ */
void selfwsolve(double *y, const mwIndex *Ljc, const mwIndex *Lir, const double *Lpr,
const mwIndex *xsuper, const mwIndex nsuper,
const mwIndex *snode, const mwIndex *yir, const mwIndex ynnz)
{
mwIndex jsup,j,inz,jnz;
double yj;
if(ynnz <= 0)
return;
/* ------------------------------------------------------------
Forward solve on each nonzero supernode snode[yir[jnz]] (=jsup-1).
------------------------------------------------------------ */
jnz = 0;
while(jnz < ynnz){
j = yir[jnz];
jsup = snode[j] + 1;
jnz += xsuper[jsup] - j; /* point to next nonzero supernode */
while(j < xsuper[jsup]){
/* ------------------------------------------------------------
Do dense computations on supernode.
The first equation, 1*y=b(j), yields y(j) = b(j).
------------------------------------------------------------ */
inz = Ljc[j];
yj = y[j++];
++inz; /* jump over diagonal entry */
/* ------------------------------------------------------------
Forward solution: y(j+1:m) -= yj * L(j+1:m,j)
------------------------------------------------------------ */
subscalarmul(y+j, yj, Lpr+inz, xsuper[jsup] - j);
for(inz += xsuper[jsup] - j; inz < Ljc[j]; inz++)
y[Lir[inz]] -= yj * Lpr[inz];
}
}
}
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
y = fwblksolve(L,b, [y])
y = L.L \ b(L.perm)
************************************************************ */
void mexFunction(const int nlhs, mxArray *plhs[],
const int nrhs, const mxArray *prhs[])
{
const mxArray *L_FIELD;
mwIndex m,n, j, k, nsuper, inz;
double *y,*fwork;
const double *permPr, *b, *xsuperPr;
const mwIndex *yjc=NULL, *yir=NULL, *bjc=NULL, *bir=NULL;
mwIndex *perm, *invperm, *snode, *xsuper, *iwork;
jcir L;
char bissparse;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert(nrhs >= MINNPARIN, "fwblkslv requires more input arguments.");
mxAssert(nlhs <= NPAROUT, "fwblkslv generates only 1 output argument.");
/* ------------------------------------------------------------
Disassemble block Cholesky structure L
------------------------------------------------------------ */
mxAssert(mxIsStruct(L_IN), "Parameter `L' should be a structure.");
if( (L_FIELD = mxGetField(L_IN,(mwIndex)0,"perm")) == NULL) /* L.perm */
mexErrMsgTxt("Missing field L.perm.");
m = mxGetM(L_FIELD) * mxGetN(L_FIELD);
permPr = mxGetPr(L_FIELD);
if( (L_FIELD = mxGetField(L_IN,(mwIndex)0,"L")) == NULL) /* L.L */
mexErrMsgTxt("Missing field L.L.");
if( m != mxGetM(L_FIELD) || m != mxGetN(L_FIELD) )
mexErrMsgTxt("Size L.L mismatch.");
if(!mxIsSparse(L_FIELD))
mexErrMsgTxt("L.L should be sparse.");
L.jc = mxGetJc(L_FIELD);
L.ir = mxGetIr(L_FIELD);
L.pr = mxGetPr(L_FIELD);
if( (L_FIELD = mxGetField(L_IN,(mwIndex)0,"xsuper")) == NULL) /* L.xsuper */
mexErrMsgTxt("Missing field L.xsuper.");
nsuper = mxGetM(L_FIELD) * mxGetN(L_FIELD) - 1;
if( nsuper > m )
mexErrMsgTxt("Size L.xsuper mismatch.");
xsuperPr = mxGetPr(L_FIELD);
/* ------------------------------------------------------------
Get rhs matrix b.
If it is sparse, then we also need the sparsity structure of y.
------------------------------------------------------------ */
b = mxGetPr(B_IN);
if( mxGetM(B_IN) != m )
mexErrMsgTxt("Size mismatch b.");
n = mxGetN(B_IN);
if( (bissparse = mxIsSparse(B_IN)) ){
bjc = mxGetJc(B_IN);
bir = mxGetIr(B_IN);
if(nrhs < NPARIN)
mexErrMsgTxt("fwblkslv requires more inputs in case of sparse b.");
if(mxGetM(Y_IN) != m || mxGetN(Y_IN) != n)
mexErrMsgTxt("Size mismatch y.");
if(!mxIsSparse(Y_IN))
mexErrMsgTxt("y should be sparse.");
}
/* ------------------------------------------------------------
Allocate output y. If bissparse, then Y_IN gives the sparsity structure.
------------------------------------------------------------ */
if(!bissparse)
Y_OUT = mxCreateDoubleMatrix(m, n, mxREAL);
else{
yjc = mxGetJc(Y_IN);
yir = mxGetIr(Y_IN);
Y_OUT = mxCreateSparse(m,n, yjc[n],mxREAL);
memcpy(mxGetJc(Y_OUT), yjc, (n+1) * sizeof(mwIndex));
memcpy(mxGetIr(Y_OUT), yir, yjc[n] * sizeof(mwIndex));
}
y = mxGetPr(Y_OUT);
/* ------------------------------------------------------------
Allocate working arrays fwork(m) and iwork(2*m + nsuper+1)
------------------------------------------------------------ */
fwork = (double *) mxCalloc(m, sizeof(double));
iwork = (mwIndex *) mxCalloc(2*m+nsuper+1, sizeof(mwIndex));
perm = iwork;
invperm = perm;
xsuper = iwork + m;
snode = xsuper + (nsuper+1);
/* ------------------------------------------------------------
Convert real to integer array, and from Fortran to C style.
In case of sparse b, we store the inverse perm, instead of perm itself.
------------------------------------------------------------ */
for(k = 0; k <= nsuper; k++)
xsuper[k] = xsuperPr[k] - 1;
if(!bissparse)
for(k = 0; k < m; k++) /* Get perm if !bissparse */
perm[k] = permPr[k] - 1;
else{
for(k = 0; k < m; k++){ /* Get invperm if bissparse */
j = permPr[k];
invperm[--j] = k;
}
/* ------------------------------------------------------------
In case of sparse b, we also create snode, which maps each subnode
to the supernode containing it.
------------------------------------------------------------ */
for(j = 0, k = 0; k < nsuper; k++)
while(j < xsuper[k+1])
snode[j++] = k;
}
/* ------------------------------------------------------------
The actual job is done here: y = L\b(perm).
------------------------------------------------------------ */
if(!bissparse)
for(j = 0; j < n; j++){
for(k = 0; k < m; k++) /* y = b(perm) */
y[k] = b[perm[k]];
fwsolve(y,L.jc,L.ir,L.pr,xsuper,nsuper,fwork);
y += m; b += m;
}
else
for(j = 0, inz = 0; j < n; j++){
for(k = inz; k < yjc[j+1]; k++) /* fwork = all-0 */
fwork[yir[k]] = 0.0;
for(k = bjc[j]; k < bjc[j+1]; k++) /* fwork = b(perm) */
fwork[invperm[bir[k]]] = b[k];
selfwsolve(fwork,L.jc,L.ir,L.pr,xsuper,nsuper, snode,
yir+inz,yjc[j+1]-inz);
for(; inz < yjc[j+1]; inz++)
y[inz] = fwork[yir[inz]];
}
/* ------------------------------------------------------------
RELEASE WORKING ARRAYS.
------------------------------------------------------------ */
mxFree(iwork);
mxFree(fwork);
}