-
Notifications
You must be signed in to change notification settings - Fork 167
/
Copy pathimplementation.py
53 lines (41 loc) · 1.38 KB
/
implementation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from time import time
def random_forest_train():
# Importing the dataset
dataset = pd.read_csv('Breast Cancer Data.csv')
X = dataset.iloc[:, 2:32].values
y = dataset.iloc[:, 1].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
y = labelencoder_X_1.fit_transform(y)
# Splitting the dataset into the Training set and Test set
global X_test, y_test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
global sc
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
return clf
def randorm_forest_test(clf):
t = time()
output = clf.predict(X_test)
acc = accuracy_score(y_test, output)
print("The accuracy of testing data: ",acc)
print("The running time: ",time()-t)
def random_forest_predict(clf, inp):
t = time()
inp = sc.transform(inp)
output = clf.predict(inp)
acc = clf.predict_proba(inp)
print("The running time: ",time()-t)
return output, acc, time()-t;