-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_processer.py
135 lines (117 loc) · 5.1 KB
/
data_processer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# @Time : 2023/3/25 18:36
# @Author : tk
import copy
import random
import typing
from enum import Enum
import numpy as np
from transformers import PreTrainedTokenizer
class DataStrategy(Enum):
tunction = 1
slidding = 2
def build_template_default(query, answer = None,prefix=None, history=None):
prompt = prefix or ''
if history is not None:
for q,a in history:
prompt += "User: {}\nAssistant:{}".format(q,a)
prompt += "User: {}\nAssistant:".format(query)
if answer is not None:
prompt += answer
return prompt
def build_template_tiger(query,answer = None,prefix=None, history=None):
prompt = prefix or ''
tok_ins = "\n\n### Instruction:\n"
tok_res = "\n\n### Response:\n"
if history is not None:
for q,a in history:
prompt += "{}{}{}{}".format(tok_ins,q,tok_res,a)
prompt += "{}{}{}".format(tok_ins, query, tok_res)
if answer is not None:
prompt += answer
return prompt
#切换模板
build_template = build_template_default
class TokenIdsMaker:
@classmethod
def final(cls, tokenizer, input_ids, labels, max_seq_length):
seqlen = np.asarray(len(input_ids), dtype=np.int32)
pad_len = max_seq_length - seqlen
input_ids = np.asarray(input_ids, dtype=np.int32)
attention_mask = np.asarray([1] * len(input_ids), dtype=np.int32)
labels = np.asarray(labels, dtype=np.int32)
if pad_len:
pad_val = tokenizer.eos_token_id
input_ids = np.pad(input_ids, (0, pad_len), 'constant', constant_values=(pad_val, pad_val))
attention_mask = np.pad(attention_mask, (0, pad_len), 'constant', constant_values=(0, 0))
labels = np.pad(labels, (0, pad_len), 'constant', constant_values=(-100, -100))
d = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'labels': labels,
'seqlen': seqlen
}
return d
@classmethod
def tunction(cls, tokenizer: PreTrainedTokenizer, config, sup, max_seq_length, examples):
sptoken = [config.bos_token_id]
ds = []
prefix = None
history = []
for sid, (role,q,a) in enumerate(examples):
if role == 'system':
prefix = q
continue
history += [(q,a)]
a_ids = tokenizer.encode(text=build_template(q,prefix=prefix,history=examples[:sid]), add_special_tokens=False)
b_ids = tokenizer.encode(text=a, add_special_tokens=False)
while len(a_ids) + len(b_ids) > max_seq_length - len(sptoken) - 1:
if len(b_ids) > len(a_ids):
b_ids.pop(-1)
else:
a_ids.pop(0)
b_ids += [ config.eos_token_id ]
input_ids = a_ids + b_ids
labels = copy.deepcopy(input_ids) if not sup else [ -100 ] * len(a_ids) + copy.deepcopy(b_ids)
input_ids = sptoken + input_ids
labels = sptoken + labels if not sup else [ -100 ] * len(sptoken) + labels
assert len(input_ids) <= max_seq_length
ds.append(cls.final(tokenizer, input_ids, labels, max_seq_length))
return ds
@classmethod
def slidding(cls, tokenizer: PreTrainedTokenizer,config,stride,max_seq_length, examples,
sliding_size=None,
src_max_length=-1,
dst_max_length=-1,
sup=True):
sptoken = [config.bos_token_id]
if sliding_size is None or sliding_size < 0:
sliding_size = max_seq_length - len(sptoken)
assert sliding_size <= max_seq_length - len(sptoken)
ds = []
prefix = None
history = []
for sid, (role,q,a) in enumerate(examples):
if role == 'system':
prefix = q
continue
history += [(q,a)]
a_ids = tokenizer.encode(text=build_template(q, prefix=prefix, history=history[:-1]),add_special_tokens=False)
b_ids = tokenizer.encode(text=a, add_special_tokens=False)
if src_max_length and src_max_length > 0:
a_ids = a_ids[:src_max_length]
if dst_max_length and dst_max_length > 0:
b_ids = b_ids[:dst_max_length]
b_ids += [config.eos_token_id]
input_ids_qa = a_ids + b_ids
labels_all = copy.deepcopy(input_ids_qa) if not sup else [-100] * len(a_ids) + b_ids
pos = 0
while pos < len(input_ids_qa):
input_ids = input_ids_qa[pos:pos + max_seq_length - len(sptoken)]
labels = labels_all[pos:pos + max_seq_length - len(sptoken)]
pos += sliding_size
if np.all(np.asarray(labels) == -100):
continue
input_ids = sptoken + input_ids
labels = sptoken + labels if not sup else [-100] * len(sptoken) + labels
ds.append(cls.final(tokenizer, input_ids, labels, max_seq_length))
return ds