-
Notifications
You must be signed in to change notification settings - Fork 7
Longest Pathology Puzzles By Size
This wiki page documents the longest known PP1 and PP2 puzzles which fit within small
Outside of trivial cases, these numbers should be considered lower bounds for the longest possible puzzles of various sizes.
To preview and play any of these levels, just copy the level data into the Pathology Level Creator
In PP1, all boxes can be pushed from all sides and there are no holes.
We have the following results for small PP1 puzzles:
2 | 3 | 4 | 5 | 6 | 7 | 8 | N | ||
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
2 | 2 | 4 | 5 | 7 | 9 | 10 | 12 | ||
3 | 8 | 11 | 14 | 17 | 20 | 23 | |||
4 | 14 | 18 | 26 | 30 | 34 | ||||
5 | 34 | 40 | 46 | 54 | ? | ||||
6 | 49 | 59 | 65 | ? | |||||
7 | 67 | 78 | ? | ||||||
8 | 90 | ? |
The results for rectangular boards with at most 25 spaces have been confirmed optimal by mathmasterzach by exhaustive computer search.
Trivial construction of the form: 40...03
40
03
413
000
4113
0000
For odd
41000
00013
For even
041000
020003
A lock with a long handle.
00...020
41...123
00...020
Two very different solutions, found by Flashback and dgriff24 respectively.
0410
0232
0220
0200
0314
2200
0020
2020
Expanded version of dgriff24's
11130
00422
01200
00201
3 More designs by davidspencer6174
00010
41023
01120
00020
00410
00232
02220
00200
02010
42023
00120
10020
By davidspencer6174
000130
010422
011200
000201
Expanded version of davidspencer6174's
0000130
0110422
0111200
0000201
Expanded version of davidspencer6174's
00000130
01110422
01111200
00000201
The best we know so far is a continuation of the above pattern with "wiggles": Ex.
000000100000130
011110001110422
010001110001200
000100000100201
02400
22220
02320
00100
10001
By davidspencer6174
100000
001022
023200
022221
004101
By davidspencer6174
0041000
0222210
0232010
0010100
1000000
By davidspencer6174
02001000
12200010
42311110
02200010
00001000
By Hem
100001
002200
022310
042200
122001
020011
By Hem
1010001
1224200
0022220
2002320
0220100
1000001
By Hem
10000111
00220011
02231001
04220200
12200220
02000020
By Hem
1110020
0200220
1220200
0422020
0223100
0022001
1000011
By Hem
0000110
0110022
0140220
0222200
0232000
0010220
1002022
1100000
02000020
12200220
10220200
00022001
01002200
01142310
00112200
10000001
We have the following results for small PP2 puzzles:
2 | 3 | 4 | 5 | 6 | 7 | 8 | N | ||
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
2 | 2 | 4 | 6 | 10 | 16 | 19 | 24 | ||
3 | 10 | 16 | 32 | 49 | 82 | 91 | $ >= N^2 + 3N - 17$ | ||
4 | 32 | 70 | 152 | ? | 189 | ? | |||
5 | 122 | 200 | ? | ? | ? | ||||
6 | 300 | ? | ? | ? | |||||
7 | ? | 386 | ? | ||||||
8 | 504? | ? |
The longest
The longest
sspenst provides a general construction for an
For
310000
552024
To scale this puzzle, insert
000
520
Between the last hole and the first box, ex.
310000 -> 310000000 -> 310000000000
552024 -> 555202024 -> 555520202024
For
3100000
5502024
The construction is similar to that of
For
31020050
55042020
For
31020005000
55540202020
The construction following
060
370
140
0413
0210
0255
By davidspencer6174 and mathmasterzach
08555
0BH29
04535
By davidspencer6174
000085
0CBA01
004153
davidspencer6174's Baker's Dozen
05020000
02BF0H41
0B5B1053
davidspencer6174's Insular Gigantism
00C00005
022F0A0C
004G1053
0600
5JD0
3A40
5080
davidspencer6174's Beyond Measure
52020
0F4E3
CG625
585B5
davidspencer6174's Break Infinity
000000
0E0I90
0F2G35
000465
50008565
59F000I4
53EH20F0
58000000
davidspencer6174's Heaping Tablespoon
30200
51020
4I2F0
010F0
00000
Neonesque's Breaking a Barrier
000005
01C245
020515
0BB715
000013
550060
02A7G0
0F4090
0EH000
001111
055553
By qqwref
00013555
02001155
0C200145
00220105
02000100
02120050
10000000
qqwref's Tiny Torment (possibly not fully optimized for step count)
00013555
0C201155
02000155
02220155
02000145
00222100
02100050
000000I0
The best known asymptotic growth for PP1 levels on an
The best known asymptotic growth for PP2 levels is exponential. One exponential construction is known: a modified version of Sokoban's exponential Fibo construction showcased by qqwref in Fibo.