Skip to content

Longest Pathology Puzzles By Size

Zachary DeStefano edited this page Mar 4, 2023 · 39 revisions

Longest Pathology Puzzles By Size

This wiki page documents the longest known PP1 and PP2 puzzles which fit within small $M \times N$ rectangles.

Outside of trivial cases, these numbers should be considered lower bounds for the longest possible puzzles of various sizes.

To preview and play any of these levels, just copy the level data into the Pathology Level Creator

PP1

In PP1, all boxes can be pushed from all sides and there are no holes.

We have the following results for small PP1 puzzles:

2 3 4 5 6 7 8 $\cdots$ N
1 1 2 3 4 5 6 7 $N - 1$
2 2 4 5 7 9 10 12 $\lfloor\frac{3N}{2}\rfloor$
3 8 11 14 17 20 23 $3 N - 1$
4 14 18 26 30 34 $4 (N + \lfloor\frac{N}{3}\rfloor) - 6$
5 34 40 46 54 ?
6 49 57 65 ?
7 66 76 ?
8 90 ?

The results for rectangular boards with at most 25 spaces have been confirmed optimal by mathmasterzach by exhaustive computer search.

$1 \times N$

Trivial construction of the form: 40...03

$2 \times 2$

40
03

$2 \times 3$

413
000

$2 \times 4$

4113
0000

$2 \times N$

For odd $N \geq 5$, the optimal is a zig-zag pattern.

41000
00013

For even $N > 5$, the optimal is a zig-zag pattern with a delaying block at the start.

041000
020003

$3 \times N$

A lock with a long handle.

00...020
41...123
00...020

$4 \times 4$

Two very different solutions, found by Flashback and dgriff24 respectively.

0410
0232
0220
0200
0314
2200
0020
2020

$4 \times 5$

Expanded version of dgriff24's $4 \times 4$

11130
00422
01200
00201

3 More designs by davidspencer6174

00010
41023
01120
00020
00410
00232
02220
00200
02010
42023
00120
10020

$4 \times 6$

By davidspencer6174

000130
010422
011200
000201

$4 \times 7$

Expanded version of davidspencer6174's $4 \times 6$

0000130
0110422
0111200
0000201

$4 \times 8$

Expanded version of davidspencer6174's $4 \times 6$

00000130
01110422
01111200
00000201

$4 \times N$

The best we know so far is a continuation of the above pattern with "wiggles": Ex.

000000100000130
011110001110422
010001110001200
000100000100201

$5 \times 5$

Hem's hemlock

02400
22220
02320
00100
10001

$5 \times 6$

By davidspencer6174

100000
001022
023200
022221
004101

$5 \times 7$

By davidspencer6174

0041000
0222210
0232010
0010100
1000000

$5 \times 8$

By davidspencer6174

02001000
12200010
42311110
02200010
00001000

$6 \times 6$

By Hem

100001
002200
022310
042200
122001
020011

$6 \times 7$

By Hem

1000011
0022001
0223100
0422022
1220020
0200010

$6 \times 8$

By Hem

10000111
00220011
02231001
04220200
12200220
02000020

$7 \times 7$

By davidspencer6174

0200010
1220020
1022020
0002200
0142310
0112200
0000001

$7 \times 8$

By davidspencer6174

10200010
01220020
00022020
01002200
01142310
00112200
00000001

$8 \times 8$

Hem's Boundary Unstable

02000020
12200220
10220200
00022001
01002200
01142310
00112200
10000001

PP2/Pathology

We have the following results for small PP2 puzzles:

2 3 4 5 6 7 8 $\cdots$ N
1 1 2 3 4 5 6 7 $N - 1$
2 2 4 6 10 16 19 24 $\Theta(N^2)$
3 10 16 32 46 56 70 $N^2 + 3N - 17$
4 30 58 104 110 133 ?
5 118 149 173 197 ?
6 168 250 274 ?
7 262 366? ?
8 504? ?

$2 \times N$

The longest $2 \times 2$ and $2 \times 3$ match the results for PP1.

The longest $2 \times 4$, 5, and 6, were found by LifereaperX: LifereaperX's 2x4, LifereaperX's 2x5, LifereaperX's 2x6

sspenst provides a general construction for an $2 \times N$ with $N > 5$.

if $N = 0 \mod 3$ then we can achieve $\frac{N^2 + 2N}{3}$ steps

For $N = 6$ we have:

310000
552024

To scale this puzzle, insert $3 \times 2$ segments of the form:

000
520

Between the last hole and the first box, ex.

310000 -> 310000000 -> 310000000000
552024 -> 555202024 -> 555520202024

if $N = 1 \mod 3$ then we can achieve $\frac{N^2 + 2N - 6}{3}$

For $N = 7$ we have:

3100000
5502024

The construction is similar to that of $N = 0 \mod 3$, but now there is a space between the boxes and the holes

if $N = 2 \mod 3$ then we can achieve $\frac{N^2 + 2N - 14}{3}$

For $N = 8$ we have:

31020050
55042020

For $N = 11$ we have:

31020005000
55540202020

The construction following $N = 11$ is similar to those above.

$3 \times 3$

LifereaperX's 3x3

060
370
140

$3 \times 4$

LifereaperX's 3x4

0413
0210
0255

$3 \times 5$

By davidspencer6174 and mathmasterzach

08555
0BH29
04535

$3 \times 6$

By davidspencer6174 and mathmasterzach

008555
01BH29
004535

$3 \times 7$

By sspenst (based on the $3 \times 6$)

0008555
011BH29
0004535

$3 \times N > 8$

By sspenst

14000000
05979760
30600000

This pattern can be extended with additional alternating 7 and 9 columns to for a solution of length N^2 + 3N - 17

$4 \times 4$

LifereaperX's 4x4 (attributed to ybbun)

5520
0020
11A0
3540

An alternative by davidspencer6174

5800
5320
7700
5460

$4 \times 5$

mathmasterzach's starting position for part of kjs0722's R2

00000
00295
0B730
00465

$4 \times 6$

sspenst's starting position for part of kjs0722's R2

580000
532DE0
57H000
546000

$4 \times 7$

sspenst's modification of mathmasterzach's 4x7-106

0000565
0EC0735
00C0H75
1460585

$4 \times 8$

hi19hi19's Pipe Wrench

00000013
0C796415
0060A205
00000000

$5 \times 5$

kjs0722's R3

00000
08020
02JA4
00837
06055

$5 \times 6$

Deleted level, modified by mathmasterzach

000013
0C1415
002215
015605
000000

$5 \times 7$

Extended version of the $5 \times 6$ found by qqwref

0000013
0C11415
0002215
0115605
0000000

$5 \times 8$

Extended version of the $5 \times 6$ found by qqwref

00000013
0C111415
00002215
01115605
00000000

$6 \times 6$

By qqwref

000000
0C0010
011250
425670
111100
355050

$6 \times 7$

By qqwref (with slight modification by mathmasterzach)

0000413
0CC1215
0201515
0002715
0115605
0000005

$6 \times 8$

By qqwref

00000413
0C0C1215
02101515
00002715
01115605
00000005

$7 \times 7$

By qqwref

0000000
0C21020
000C010
0111000
0000220
1111140
3555555

$7 \times 8$

By qqwref (possibly not fully optimized for step count)

00013555
0C001155
00200145
02020105
00202100
02120050
00000060

$8 \times 8$

qqwref's Tiny Torment (possibly not fully optimized for step count)

00013555
0C201155
02000155
02220155
02000145
00222100
02100050
000000I0

Asymptotics

The best known asymptotic growth for PP1 levels on an $n \times n$ grid is $\Omega(n^4)$. In the top half of the grid, one can create $\Theta(n^2)$ directional locks in alternating directions in the style of the level Forgive Me. In the lower half of the grid, one can make a winding path of length $\Theta(n^2)$ that must be traversed once per directional lock.

The best known asymptotic growth for PP2 levels is exponential. One exponential construction is known: a modified version of Sokoban's exponential Fibo construction showcased by qqwref in Fibo.