-
Notifications
You must be signed in to change notification settings - Fork 0
/
EquationsOfMotion.tex
543 lines (458 loc) · 23 KB
/
EquationsOfMotion.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
\chapter{Spin-1 equations of motion}
\input{ExactEquationsSpin1}
\subsection{Derivation of relativistic Hamiltonian}
We want to derive a "Schrodinger-like" equation governing the nonrelativistic motion of the vector particle; an equation of the form $i\partial_t \Psi = \hat{H} \Psi$. Since it is a vector particle, $\Psi$ is a spinor with three components. We will first find such an equation for a bispinor in the relativistic theory, having the form:
\[
i\partial_t
\begin{pmatrix}
\Psi_u \\ \Psi_l
\end{pmatrix}
=
\hat{H}
\begin{pmatrix}
\Psi_u \\ \Psi_l
\end{pmatrix}
\]
If we have a Lagrangian describing the interaction, such an equation can be obtained from the Euler-Lagrange equations.
We have such a Lagrangian:
\begin{eqnarray*}
\mathcal{L}
&=& -\frac{1}{2} (D \times W)^\dagger \cdot (D \times W)
+ m_w^2 W^\dagger W
- i e {W^\dagger}^\mu W^\nu F_{\mu \nu} \\
\end{eqnarray*}
Where
\begin{eqnarray*}
D^\mu = \partial^\mu - i e A^\mu ,
&&
D \times W = D^\mu W^\nu - D^\nu W^\mu
\end{eqnarray*}
The last term in the Lagrangian, $-ie{W^\dagger}^\mu W^\nu F_{\mu\nu}$, is needed to produce the "natural" magnetic moment of g=2. We can introduce an anomalous magnetic moment by changing the coefficient of that term, from 1 to $1+(g-2)$. For now call this coefficient $\lambda$. Now
\begin{eqnarray*}
\mathcal{L}
&=& -\frac{1}{2} (D \times W)^\dagger \cdot (D \times W)
+ m_w^2 W^\dagger W
- \lambda i e {W^\dagger}^\mu W^\nu F_{\mu \nu} \\
\end{eqnarray*}
We can find the equations of motion with the Euler-Lagrange method.
\begin{eqnarray*} \pd{ \mathcal{L}}{{W^\dagger}^\alpha} - \frac{d}{dt} \frac{\partial \mathcal{L}} {\partial (\partial_t {W^\dagger}^ \alpha)}
&=& 0 \\
\frac{ \partial}{\partial {W^\dagger}^\alpha} (D \times W)^\dagger_{\mu \nu} (D \times W)^{\mu \nu}
&=& \frac{ \partial}{\partial {W^\dagger}^\alpha}
(D_\mu W_\nu - D_\nu W_\mu)^\dagger(D^\mu W^\nu - D^\nu W^\mu) \\
&=& \frac{ \partial}{\partial {W^\dagger}^\alpha}
2(D_\mu W_\nu)^\dagger(D^\mu W^\nu - D^\nu W^\mu) \\
&=& \frac{ \partial}{\partial {W^\dagger}^\alpha}
2W^\dagger_\mu D_\nu (D^\mu W^\nu - D^\nu W^\mu) \\
&=& 2g_\mu^\alpha D_\nu(D^\mu W^\nu - D^\nu W^\mu) \\
&=& 2 D_\nu(D^\alpha W^\nu - D^\nu W^\alpha) \\
\frac{ \partial}{\partial {W^\dagger}^\alpha} m_W^2 {W^\dagger}^\mu W_\mu
&=& m_W^2 W_\alpha \\
\frac{ \partial}{\partial {W^\dagger}^\alpha} \lambda i e {W^\dagger}^\mu W^\nu F_{\mu \nu}s
&=& \lambda i e g^{\alpha \mu} W^\nu F_{\mu \nu} \\
&=& - \lambda i e W_\nu F^{\nu \mu}
\end {eqnarray*}
To obtain a coupled set of first order equations, we introduce the fields $W^{\mu \nu} = D^\mu W^\nu - D^\nu W^\mu$.
\begin{eqnarray}
D_\mu W^{\mu \nu} + m_W^2 W^\nu + \lambda i e W_\mu F^{\mu \nu} = 0 \\
W^{\mu \nu} = D^\mu W^\nu - D^\nu W^\mu
\end{eqnarray}
$W^{\mu\nu}$ is antisymmetric and so has six degrees of freedom, corresponding to six independent fields. Together with $W^\mu$ this represents a total of ten fields. However, upon examination only some of these fields are dynamic. The fields $W^{0i}$ and $W^{i}$ appear in the equations with time derivatives, while the fields $W^{ij}$ and $W^0$ never do. So it is only necessary to consider the former six fields. So that these six fields all have the same dimension, we will define $\frac{W^{i0}}{m} = i \eta^i$.
We will now eliminate the extraneous fields and solve for $iD_0 W^i$, $iD_0 \eta^i$.
Consider (1) with $\nu=0$:
\begin{equation*}
-D^i W ^{i0} + m^2 W^0 - \lambda i e W^{i} F^{i0} = 0
\end{equation*}
or equivalently, using $F^{i0} = -E^i$:
\begin{eqnarray*}
W^0 &=& \frac{1}{m} \left [ D^i \frac{W^{i0}}{m} + \lambda ie \frac{\v{W}}{m} \cdot \v{E} \right ] \\
&=& \frac{i}{m} \left [ \v{D} \cdot \gv{\eta} + \lambda ie \frac{\v{W}}{m} \cdot \v{E} \right ]
\end{eqnarray*}
Now consider (1) with $\nu=i$:
\begin{equation*}
D^0 W^{0i} - D^j W^{ji} + m^2 W^{i} + \lambda ieW^0 F^{0i} - \lambda ieW^{j} F^{ji} = 0
\end{equation*}
Using the definition of $W^{ij}$, the previously defined $\eta^i$, and that $F^{ij} = \epsilon_{ijk} B_k$
\begin{equation*}
-i D^0 m \eta^i - D^j (D^j W^i - D^i W^j) + m^2 W^i - \lambda ieW^0 E^i - \lambda ieW^{j} \epsilon_{jik} B_k = 0
\end{equation*}
This gives
\begin{equation} \label{eq:eta1}
iD^0 \eta^i = \frac{1}{m} \left (\v{D} \times (\v{D} \times \v {W}) \right)^i + m W^i + \lambda\frac{e}{m^2} E^i \left( \v{D} \cdot \gv{\eta} + \lambda \frac{e}{m} \v{W} \cdot \v{E} \right) + \lambda \frac{ie}{m} (\v{W} \times \v{B} )^i
\end{equation}
Now, look at (2) with $\nu=0, \mu=i$:
\begin{eqnarray*}
W^{i0}
&=& D^i W^0 - D^0 W^i \\
&=& \frac{i}{m} D^i \left [ \v{D} \cdot \gv{\eta} + \lambda ie \frac{\v{W}}{m} \cdot \v{E} \right ] - D^0 W^i
\end{eqnarray*}
This yields an equation for $iD^0 W^i$:
\begin{equation}\label{eq:W1}
i D^0 W^i =
m \eta^i - \frac{1}{m} D^i \left [ \v{D} \cdot \gv{\eta} + \lambda ie \frac{\v{W}}{m} \cdot \v{E} \right ]
\end{equation}
We have two equations for $i D_0 W^i$ and $i D_0 \eta^i$. But we need these equations written so that each term should be written as an operator acting on either $\v{W}$ or $\gv{\eta}$. For this purpose, we introduce into the equations the spin matrices $S_i$. Then, using the identities shown in the appendix, we can rewrite \eqref{eq:eta1} it as:
\begin{equation}
\begin{split}
iD^0 \gv{\eta} =& -\frac{1}{m} (\v{S} \cdot \v{D})^2 \v{W}
+ m\v{W}
+ \lambda \frac{e}{m^2} \left [ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D} \right ] \gv{\eta} \\
& - \lambda \frac{e}{m} \v{S} \cdot \v{B} \v{W}
+ \lambda^2 \frac{e^2}{m^3} \left [ \v{E}^2 - (\v{S} \cdot \v{E})^2 \right ] \v{W}
\end{split}
\end{equation}
Likewise, write \eqref{eq:W1} as:
\begin{equation}
iD^0 \v{W} = m\gv{\eta}
- \frac{1}{m}\left [ \v{D}^2 - (\v{S} \cdot \v{D})^2 + e \v{S} \cdot \v{B} \right ] \v{\eta}
- \lambda \frac{e}{m^2} \left [ \v{D} \cdot \v{E} - (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) + i \v{S} \cdot \v{D} \times \v{E} \right ] \v{W}
\end{equation}
Now, these two equations can be written together in matrix form, from which the Hamiltonian can be easily obtained.
\begin{equation*}
iD_0
\begin{pmatrix}
\eta \\ W
\end{pmatrix}
=
\begin{pmatrix}
\lambda \frac{e}{m^2} \left [ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D} \right ]
&
m
-\frac{1}{m} (\v{S} \cdot \v{D})^2
- \lambda \frac{e}{m} \v{S} \cdot \v{B}
+ \lambda^2 \frac{e^2}{m^3} \left [ \v{E}^2 - (\v{S} \cdot \v{E})^2 \right ]
\\
m
- \frac{1}{m}\left [ \v{D}^2 - (\v{S} \cdot \v{D})^2 + e \v{S} \cdot \v{B} \right ]
&
- \lambda \frac{e}{m^2} \left [ \v{D} \cdot \v{E} - (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) + i \v{S} \cdot \v{D} \times \v{E} \right ]
\end{pmatrix}
\begin{pmatrix}
\eta \\ W
\end{pmatrix}
\end{equation*}
\subsubsection{Current}
We can also derive the conserved current from the Lagrangian:
\begin{eqnarray*}
\mathcal{L}
&=& -\frac{1}{2} (D \times W)^\dagger \cdot (D \times W)
+ m_w^2 W^\dagger W
-\lambda i e {W^\dagger}^\mu W^\nu F_{\mu \nu} \\
\end{eqnarray*}
Where
\begin{eqnarray*}
D^\mu = \partial^\mu - i e A^\mu ,
&&
D \times W = D^\mu W^\nu - D^\nu W^\mu
\end{eqnarray*}
We want the conserved current corresponding to the transformation $ W_i \to e^{i \alpha}W_i $, which in infinitesimal form is:
\begin{equation*}
W_\mu \to W_\mu + i \alpha W_\mu, \;
W_\mu^\dagger \to W_\mu^\dagger - i \alpha W_\mu^{\dagger}
\end{equation*}
The 4-current density will be:
\begin{equation*}
j^{\sigma} = -i \pd {\mathcal{L} }{W_{\mu, \sigma}} W_\mu + i\pd {\mathcal{L} }{W^\dagger_{\mu, \sigma}} W^\dagger_\mu
\end{equation*}
Only one term contains derivatives of the field:
\begin{eqnarray*}
\pd {\mathcal{L} }{W_{\alpha, \sigma}}
&=& \pd{}{W_{\alpha, \sigma}} \left \{ - \frac{1}{2} (D_\mu W_\nu - D_\nu W_\mu)^\dagger(D^\mu W^\nu - D^\nu W^\mu) \right \}\\
&=& - \frac{1}{2} (D_\mu W_\nu - D_\nu W_\mu)^\dagger (g_{\sigma \mu} g_{\alpha \nu} - g_{\sigma \nu}g_{\alpha \mu})\\
&=& - (D_\alpha W_\sigma - D_\sigma W_\alpha)^\dagger
\end{eqnarray*}
Likewise:
\begin{eqnarray*}
\pd {\mathcal{L} }{W_{\alpha, \sigma}^\dagger}
&=& - (D_\alpha W_\sigma - D_\sigma W_\alpha)
\end{eqnarray*}
If we define $W_{\mu \nu} = D^\mu W^\nu - D^\nu W^\mu$ then the 4-current and charge density are:
\begin{eqnarray*}
j_\sigma &=& i W_{\sigma \mu}^\dagger W^{\mu} - i W_{\sigma \mu} {W^{\dagger}}^\mu \\
j_0 &=& i W_{0 \mu}^\dagger W^{\mu} - i W_{0 \mu} {W^{\dagger}}^\mu \\
&=& i W_{0 i}^\dagger W^i - i W_{0 i} {W^{\dagger}}^i \\
\end{eqnarray*}
Where the last equality follows from the antisymmetry of $W_{\mu \nu}$.
Now, we defined the fields $\eta_i = -i \frac{W_{i0}}{m}$. In terms of these fields,
$j_0 = m (\eta_i^\dagger W^i + \eta_i {W^\dagger}^i )$.
We can do the same to find the vector part of the current.
\begin{eqnarray*}
j_i &=& i W_{i \mu}^\dagger W^{\mu} - i W_{i \mu} {W^{\dagger}}^\mu \\
&=& i W_j^\dagger W_{ij} + i W_{i0}^\dagger W_0 + c.c.
\end{eqnarray*}
We have $W_{ij} = D_i W_j - D_j W_i$. Using the identities developed in the appendix, we can obtain
\[ D_j W_i = D_i W_j - D_k(S_i S_k)_{ja} W_a \]
Then
\[ W_{ij} = D_k (S_i S_k)_{ja} W_a \]
In the absence of an electric field E, $W_{0} = \frac{i}{m} D_j \eta_j$, with $W_{i0} = i m \eta_i$.
\[ W_{i0}^\dagger W_0 = - \eta_i^\dagger D_j \eta_j \]
Again we introduce spin matrices to get the equation in the desired form, and obtain
\[ W_{i0}^\dagger W_0 = - \eta_j^\dagger D_k (\delta_{ik} - S_k S_i) \eta_j \]
This leads to
\[ j_i = i W_j^\dagger D_k (S_i S_k W)_j - i \eta_j^\dagger D_k ([\delta_{ik} - S_k S_i]\eta)_j + c.c. \]
Writing this in terms of the bispinor $\begin{pmatrix}\eta \\ W\end{pmatrix}$, the expression for the current is
\begin{equation} j_i =
\frac{i}{2} \begin{pmatrix}\eta^\dagger && W^\dagger \end{pmatrix} \left [
(\{S_i, S_j\} - \delta_{ij})
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
- ([S_i, S_j] +\delta_{ij}) \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}
\right ]
D_j \begin{pmatrix}\eta \\ W\end{pmatrix} + c.c.
\end{equation}
\subsubsection{Hermiticity of Hamiltonian}
It's clear from inspection that the above Hamiltonian is not Hermitian in the standard sense. (Of the operators in use, the only one which is not self adjoint is $D_i^\dagger = - D_i$.) Noticing that
\[
\left [ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D} \right]^\dagger
= - \left [ \v{D} \cdot \v{E} - (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) + i \v{S} \cdot \v{D} \times \v{E} \right ]
\]
we can see it has the general form
\[
H =
\begin{pmatrix}
A & B \\
C & A^\dagger
\end{pmatrix}
\]
where the off diagonal blocks are Hermitian in the normal sense: $B^\dagger = B$ and $C^\dagger=C$.
At this point we should consider that an operator is defined as Hermitian with respect to a particular inner product. In quantum mechanics this inner product is normally defined as:
\[ <\Psi, \phi> = \int d^3x \Psi^\dagger \phi \]
This definition, however, does not produce sensible results for the states in question. We need the inner product of a state with itself to be conserved; in other words, it should play the role of a conserved charge. From the considerations above we already have one such quantity: the conserved charge $\int d^3x j_0$, where
\[
j_0 = m [\eta^\dagger W + W^\dagger \eta]
= m \begin{pmatrix} \eta^\dagger & W^\dagger \end{pmatrix}
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\begin{pmatrix} \eta \\ W \end{pmatrix}
\]
A more general definition of the inner product includes some weight M:
\[ <\Psi, \phi> = \int d^3x \Psi^\dagger M \phi \]
In normal quantum mechanics M would be the identity matrix, but here, as implied by the charge density, we want $M=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Such a definition will lead to the inner product $<\Psi, \Psi>$ being conserved.
An operator H is hermitian with respect to this inner product if
\[ <H\Psi, \phi> = <\Psi, H\phi> \to
\int d^3x \Psi^\dagger H^\dagger M \phi = \int d^3x \Psi^\dagger M H \phi
\]
For this equality to hold, it is sufficient for $H^\dagger M = M H$. With $M=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $H=\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ this condition reduces to
\[
\begin{pmatrix} A^\dagger & C^\dagger \\ B^\dagger & D^\dagger \end{pmatrix}
=\begin{pmatrix} D & C \\ B & A \end{pmatrix}
\]
Our Hamiltonian fulfills exactly this requirement, and so is Hermitian with respect to this particular inner product.
\subsection{Non-relativistic Hamiltonian}
Now we will consider the non-relativistic limit of the above Hamiltonian. To work in this regime constrains the order of both the momentum and the electromagnetic field strength.
\begin{eqnarray*}
D &\sim& mv \\
\Phi &\sim& mv^2 \\
E &\sim& m^2v^3 \\
B &\sim& m^2v^2
\end{eqnarray*}
We can write the Hamiltonian matrix in terms of the basis of 2x2 Hermitian matrices: $({\bf I}, \rho_i)$:
\begin{eqnarray*}
H &=& a_0 {\bf I} + a_i \rho_i \\
a_0 &=&
\frac{1}{2}(H_{11}+H_{22}) =
e\Phi +
\lambda \frac{e}{2m^2}
\left [
\v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D}
- \v{D} \cdot \v{E} + (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) - i \v{S} \cdot \v{D} \times \v{E}
\right ]\\
a_3 &=&
\frac{1}{2}(H_{11}-H_{22}) =
\lambda s\frac{e}{2m^2} \left [
\v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D}
+ \v{D} \cdot \v{E} - (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) + i \v{S} \cdot \v{D} \times \v{E}
\right ]\\
ia_2 &=&
\frac{1}{2}(H_{21}-H_{12}) =
-\left [
\frac{\v{D}^2}{2m} - \frac{1}{m} (\v{S} \cdot \v{D})^2
-\frac{\lambda-1}{2} \frac{e}{m} \v{S} \cdot \v{B}
+ \frac{e^2}{2m^3}(\v{E}^2 -(\v{S}\cdot\v{E})^2)
\right ] \\
a_1 &=&
\frac{1}{2}(H_{12}-H_{21}) =
\left [
m - \frac{\v{D}^2}{2m} - \frac{1+\lambda}{2}\frac{e}{m}\v{S} \cdot \v{B}
+ \frac{e^2}{2m^3}(\v{E}^2 -(\v{S}\cdot\v{E})^2)
\right ]
\end{eqnarray*}
We can see that to leading order, the Hamiltonian is
\begin{equation*}
H = m \rho_1 =
\begin{pmatrix}
0 & m \\
m & 0 \\
\end{pmatrix}
\end{equation*}
Since we wish to separate positive and negative energy states, this poses a problem. So we first switch to a basis where at least the rest energies are separate. Then, remaining off-diagonal elements can be treated as perturbations.
An appropriate transformation which meets our requirements is a "rotation" in the space spanned by $\rho_i$ matrices, about the $\rho_1 + \rho_3$ axis. This has the explicit form:
\begin{equation}
U =\frac{1}{\sqrt {2}} (\rho_1 + \rho_3)
= \frac{1}{\sqrt {2}}
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\end{equation}
Any transformation U can be described by it's action on the basis of 4x4 matrices. This takes:
\begin{eqnarray*}
{\bf I} & \to & {\bf I} \\
\rho_1 & \to & \rho_3 \\
\rho_3 & \to & \rho_1 \\
\rho_2 & \to & -\rho_2 \\
\begin{pmatrix}
\eta \\ W
\end{pmatrix}
& \to &
\begin{pmatrix}
\Psi_u \\ \Psi_\ell
\end{pmatrix}
= \frac{1}{\sqrt{2}}
\begin{pmatrix}
\eta + W \\ \eta - W
\end{pmatrix}
\end{eqnarray*}
(This transformation will transform the current to
\[ j_0 = m (\Psi_u^\dagger \Psi_u - \Psi_\ell^\dagger \Psi_\ell) \]
and the weight M, used in the inner product, to
\[ M \to M' = U^\dagger M U = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
The transformed Hamiltonian will of course be Hermitian with respect to the transformed inner product.)
Our equation is now of the following form:
\begin{eqnarray*}
i\partial_0 \begin{pmatrix} \Psi_u \\ \Psi_\ell \end{pmatrix}
& =&
H' \begin{pmatrix} \Psi_u \\ \Psi_\ell \end{pmatrix}
\end{eqnarray*}
We can see that the Hamiltonian still contains off-diagonal elements, so this represents a pair of coupled equations for the upper and lower components of $\gv{\Psi}$. But the off-diagonal terms are small, so we can consider the case where $\Psi_\ell$ is small compared to $\Psi_u$. Solving for $\Psi_\ell$ in terms of $\Psi_u$:
\begin{eqnarray*}
E \Psi_\ell &=& H'_{21} \Psi_u + H'_{22} \Psi_\ell \\
\Psi_\ell &=& (E - H'_{22})^{-1} H'_{21} \Psi_u
\end{eqnarray*}
This gives the exact formula:
\begin{eqnarray*}
E \Psi_u &=& \left( H'_{11} + H'_{12}[E-H'_{22}]^{-1} H'_{21} \right) \Psi_u
\end{eqnarray*}
However, we only need corrections to the magnetic moment of order $v^2$. With $\frac{e}{m}\v{S} \cdot \v{B} \sim mv^2$, this means we only need the Hamiltonian to at most order $mv^4$. Examining the leading order terms of the matrix H', the diagonal elements are order m while the off-diagonal elements are order $mv^2$. To leading order the term $[E-H'_{22}]^{-1}=\frac{1}{2m}$. So we'll need $H'_{11}$ to $\mathcal{O}(v^4)$, and $H'_{12}$, $H'_{21}$, and $[E-H'_{22}]^{-1}$ each to only leading order.
\[ E \Psi_u = \left( H'_{11} + \frac{1}{2m}H'_{12} H'_{21} + \mathcal{O}(mv^6)\right) \Psi_u \]
The needed terms of H are, using $\lambda=g-1$
\begin{eqnarray*}
H'_{11} = a_0+ a_3
&=& m + e\Phi - \frac{D^2}{2m} - \frac{g}{2}\frac{e}{m} \v{S} \cdot \v{B} \\
&& +(g-1)\frac{e}{2m^2}
\left [
\v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D}
- \v{D} \cdot \v{E} + (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) - i \v{S} \cdot \v{D} \times \v{E}
\right ]
+\mathcal{O}(mv^6) \\
H'_{12} = a_1 - ia_2
&=& \frac{D^2}{2m} - \frac{1}{m}(\v{S} \cdot \v{D})^2 - \frac{g-2}{2}\frac{e}{m} \v{S} \cdot \v{B}
+\mathcal{O}(mv^4) \\
H'_{21} = a_1 + ia_2
&=& -\frac{D^2}{2m} + \frac{1}{m}(\v{S} \cdot \v{D})^2 + \frac{g-2}{2}\frac{e}{m} \v{S} \cdot \v{B}
+\mathcal{O}(mv^4)
\end{eqnarray*}
The product $H'_{12}H'_{21}$ is calculated in the appendix. To first order in the magnetic field strength it is:
\begin{eqnarray*}
\frac{1}{2m}H'_{12}H'_{21}
&=& -\frac{1}{2m^3}\left( \frac {\v{D}^2} {2} - (\v{S} \cdot \v{D})^2 - \frac{g-2}{2} e\v{S} \cdot \v{B} \right )^2 \\
&=& -\frac{1}{2m^3}\left(
\frac{ \gv{\pi}^4 } {4} - e \v{p}^2 \v{S} \cdot \v{B}
-\frac{g-2}{2}e (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p})
\right)
\end{eqnarray*}
So finally,replacing all $\v{D}$ with $\gv{\pi} \equiv \v{p} - e \v{A}$, we have a direct expression for $\Psi_u$:
\begin{eqnarray*}
E \Psi_u
&=&\left \{ m + e\Phi + \frac{\pi^2}{2m} - \frac{g}{2}\frac{e}{m} \v{S} \cdot \v{B}
- \frac{\pi^4 } {8m^3}
+ \frac{ e \v{p}^2 (\v{S} \cdot \v{B}) }{2m^3}
+ (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p})
\right . \\
&& \left .
+ (g-1)\frac{ie}{2m^2} \left [
\v{E} \cdot \gv{\pi} - (\v{S} \cdot \v{E}) (\v{S} \cdot \gv{\pi}) + i \v{S} \cdot \v{E} \times \gv{\pi}
- \gv{\pi} \cdot \v{E} + (\v{S} \cdot \gv{\pi}) (\v{S} \cdot \v{E}) - i \v{S} \cdot \gv{\pi} \times \v{E}
\right ]
\right \}\Psi_u
\end{eqnarray*}
The complicated expression in square brackets can be cleaned up a bit:
\begin{eqnarray*}
\v{E} \cdot \gv{\pi} - \gv{\pi} \cdot \v{E}
&=& [E_i, \pi_i] \\
&=& [E_i, -i\partial_i] \\
&=& i(\partial_i E_i) \\
(\v{S} \cdot \v{E}) (\v{S} \cdot \gv{\pi}) - (\v{S} \cdot \gv{\pi}) (\v{S} \cdot \v{E})
&=& S_i S_j E_i \pi_j - S_i S_j \pi_i E_j \\
&=& (S_i S_j) (E_i \pi_j - E_j \pi_i - [\pi_i, E_j]) \\
&=& [S_i, S_j](E_i \pi_j) - (S_i S_j)(-i \nabla_i E_j) \\
&=& (i\epsilon_{ijk}S_k)E_j \pi_i - (S_i S_j)(-i \nabla_i E_j) \\
&=& i \v{S} \cdot \v{E} \times \gv{\pi} + i S_i S_j \nabla_i E_j) \\
(\v{E} \times \gv{\pi} - \gv{\pi} \times \v{E})_k
&=& \epsilon_{ijk}(E_i \pi_j - \pi_i E_j) \\
&=& \epsilon_{ijk}(E_i \pi_j + \pi_j E_i) \\
&=& \epsilon_{ijk}(2 E_i \pi_j + [\pi_i, E_j]) \\
&=& 2 \epsilon_{ijk} E_i \pi_j \\
&=& 2 (\v{E} \times \gv{\pi})_k
\end{eqnarray*}
Using these identities and collecting terms, and then writing everything in terms of $g$, $g-2$
\begin{eqnarray*}
E \Psi_u
&=&\left\{ m + e\Phi + \frac{\pi^2}{2m} - \frac{\pi^4 } {8m^3}
- \frac{e}{m} \v{S} \cdot \v{B} \left ( \frac{g}{2} - \frac{p^2}{2m^2} \right )
+ (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p}) \right. \\
&& \left.
- (g-1)\frac{e}{2m^2}
\left [
\v{\nabla} \cdot \v{E}
- S_i S_j \nabla_i E_j +\v{S} \cdot \v{E} \times \gv{\pi}
\right ]
\right\}\Psi_u \\
&=& \left\{ m + e\Phi + \frac{\pi^2}{2m} - \frac{\pi^4 } {8m^3}
- \frac{g}{2}\frac{e}{m} \v{S} \cdot \v{B} \left ( 1 - \frac{p^2}{2m^2} \right )
- \frac{g-2}{2} \frac{e}{m} \frac{p^2}{2m^2} \v{S} \cdot \v{B}
+ (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p}) \right. \\
&& \left.
- \left ( \frac{g}{2} + \frac{g-2}{2} \right) \frac{e}{2m^2}
\left [
\v{\nabla} \cdot \v{E}
- S_i S_j \nabla_i E_j +\v{S} \cdot \v{E} \times \gv{\pi}
\right ]
\right\}\Psi_u
\end{eqnarray*}
We have a Hamiltonian for the upper component of the bispinor, as desired. But is it truly Schrodinger-like? In the general case we would need to perform the Foldy-Wouthyusen transformation, to a representation where all the physics up to the desired order is contained in the single spinor equation. But we can show that, at the order we are working at, the Hamiltonian above is correct.
\subsection{Normalization}
What we want is a single equation for the non-relativistic particle. Because the lower component of the bispinor is small but nonzero, it is not necessarily true that the above equation accurately captures the physics. The FW transformation to a basis where the lower component is truly negligible might be necessary.
However, here it can be shown that such a transformation will have no effect at the desired order. The transformation U would have the form::
$U = e^{iS} $ where S is Hermitian. Because the Hamiltonian is diagonal at leading order, S must be small, and the transformation will affect $\Psi_u$ as
\begin{eqnarray*}
\Psi_u \to \Psi'_u= (1 + \Delta)\Psi_u
\end{eqnarray*}
where $\Delta$ is some small operator. The probability density must be unaffected by this change, so:
On the one hand, with $\Psi_\ell = \epsilon \Psi_u$, $ \epsilon \sim \mathcal{O}(v^2) $
\begin{eqnarray*}
\int d^3 x (\Psi_u^\dagger \Psi_u - {\Psi^\dagger}_\ell \Psi_\ell)
&=& \int d^3 x (\Psi_u^\dagger \Psi_u - (\epsilon {\Psi_u})^\dagger \epsilon \Psi_u) \\
&=& \int d^3 x \Psi_u^\dagger (1 + \mathcal{O}(v^4)) \Psi_u
\end{eqnarray*}
And on the other hand:
\begin{eqnarray*}
\int d^3 x {\Psi'}_u^\dagger \Psi'_u
&=& \int d^3 x ([1 + \Delta]\Psi_u)^\dagger (1+\Delta)\Psi_u \\
\end{eqnarray*}
Comparing the two, it can be seen that $\Delta$ must be no larger than $\mathcal{O}(v^4)$. Now considering the new equation for $\Psi'_u$:
\begin{eqnarray*}
(E -m)\Psi_u
&=& \left(H'_{11} + \frac{1}{2m}H'_{12} H'_{21} \right) \Psi_u\\
(E-m)(1-\Delta)\Psi'_u
&=& \left(H'_{11} + \frac{1}{2m}H'_{12} H'_{21} \right) (1-\Delta)\Psi'_u\\
(E-m)\Psi'_u
&=& (1 + \Delta)\left(H'_{11} + \frac{1}{2m}H'_{12} H'_{21} \right) (1-\Delta)\Psi'_u
\end{eqnarray*}
Since $H' \sim \mathcal{O}(mv^2)$ and $\Delta \sim \mathcal{O}(v^4)$, to $\mathcal{O}(v^4)$, $\Psi'_u$ obeys exactly the same equation as $\Psi_u$:
\begin{eqnarray*}
(E -m)\Psi'_u
&=& \left ( H'_{11} + \frac{1}{2m} H'_{12} H'_{21} \right ) \Psi'_u \\
\end{eqnarray*}
%%%%% Below needs to be moved elsewhere !