-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpinOne-Equations.tex
528 lines (454 loc) · 27.6 KB
/
SpinOne-Equations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
\chapter{Spin one: Derivation of nonrelativistic Hamiltonian --- the Foldy-Wouthyusen approach}
The ultimate goal is to investigate the $g$-factor of bound particles of arbitrary spin. In the previous section, two methods were reviewed for a spin-half particle: deriving the Hamiltonian from the equations of motion, and calculating the NRQED Lagrangian by comparing scattering diagrams.
Both of these methods can be employed anytime a Lagrangian is known for the particle. The standard model contains charged spin-one particles, the W bosons. So as a next step to investigating the behavior of general spin particles, both of the methods used for spin-half can be applied to the W.
\section{Relativistic theory}
\subsection{Lagrangian for the W boson}
The Lagrangian describing the interaction of the W boson with the photon field is
%TODO label lagrangian L_? Also label modified L
\beq
\mathcal{L}
= -\frac{1}{2} (D^\mu W^\nu - D^\nu W^\mu)^\dagger (D_\mu W_\nu - D_\nu W_\mu)
+ m^2 W^{\mu \dagger} W_\mu - i e W^{\mu \dagger} W^\nu F_{\mu\nu}.
\eeq
This Lagrangian is part of a renormalizable theory. If the free $g$-factor is calculated at tree level, it will be found that $g=2$. Phenomenologically, behavior when $g \neq 2$ is interesting, so the Lagrangian can be modified to
\beq \label{eq:S1:LagrangianAnom}
\mathcal{L}
= -\frac{1}{2} (D^\mu W^\nu - D^\nu W^\mu)^\dagger (D_\mu W_\nu - D_\nu W_\mu)
+ m^2 W^{\mu \dagger} W_\mu - i [g-1] e W^{\mu \dagger} W^\nu F_{\mu\nu}.
\eeq
When $g=2$ the two Lagrangians are identical. The contribution to the free $g$-factor comes from two separate terms, but modifying the other term would necessitate also modifying the kinetic terms of the Lagrangian. %TODO explain in more detail?
In this Lagrangian, $W_\mu$ is the charged boson field of mass $m$, and $A_\mu$ is the massless photon field. Both are vector fields, but $W$ has three degrees complex of freedom and $A$ has two real degrees of freedom. The electromagnetic field-strength tensor is $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$.
\subsection{Equations of motion}
The goal is to obtain, from the relativistic Lagrangian, a nonrelativistic Schrodinger-like equation that gives the nonrelativistic Hamiltonian. As before, with spin one-half, the path will be to first find the relativistic equations of motion, solve them for the relativistic energies of the particles, and then consider how the one-particle arises.
If we call the six component bispinor $\Psig$, then the relativistic Hamiltonian will have the form $i \partial_0 \Psig = \hat{H} \Psig$, or explicitly writing the upper and lower components of the bispinor and the block structure of the Hamiltonian:
\beq \label{eq:S1:formofH}
i \partial_0 \begin{pmatrix} \Psig_u \\ \Psig_\ell \end{pmatrix}
= \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} \Psig_u \\ \Psig_\ell \end{pmatrix}.
\eeq
Seeking an equation of this form, first the equations of motion are obtained using the Euler-Lagrange method:
\beq
\pd{\mathcal{L}}{W^{\dagger \alpha}} - \partial_\mu \pd{ \mathcal{L} }{ [\partial_\mu W^{\dagger \alpha}] } = 0.
\eeq
It is easiest to use integration by parts to have all derivative operators act to the right, upon $W$. The equation of motion obtained is
\beq \label{eq:S1:ELeq}
m^2 W_\alpha - i e [g-1] W^\nu F_{\alpha \nu} + D_\mu (D^\mu W_\alpha - D_\alpha W^\mu) = 0.
\eeq
This is a set of four second order equations for $W_\mu$. But \eqref{eq:S1:formofH} is a first order equation. Second order equations may be transformed into first order by introducing additional fields. So introduce the field $W_{\mu\nu} = D_\mu W_\nu - D_\nu W_\mu$. Being antisymmetric, it has 6 components, in addition to the four components of $W_\mu$. The resulting set of first order equations is
\beq \label{eq:S1:ELeqA}
W_{\mu\nu} = D_\mu W_\nu - D_\nu W_\mu,
\eeq
\beq \label{eq:S1:ELeqB}
m^2 W_\alpha - ie [g-1] W^\nu F_{\alpha \nu} + D^\mu W_{\mu \alpha} = 0 .
\eeq
In addition to being first order, the Schrodinger like equation for a spin-one particle should involve a three component spinor. It is obtained from a relativistic equation for a bispinor, with the upper and lower components each having three components. So the ten total degrees of freedom above need to be reduced somehow.
On inspection, it turns out that only six of the components are dynamic -- the other four occur only in equations which do not involve the time derivative. $W_0$ is one such field, the other three are $W_{ij} = D_i W_j - D_j W_i$. These four fields need not appear in any Schrodinger-like equation expressing the time evoluation of the fields, and so the necessary 6 components are obtained.
%TODO look into factor of i in equation for \eta
The six components that remain are $W_i$ and $W_{0i} = - W_{i0}$. Eventually these need to be arranged in a bispinor, but note that $W_{i0}$ has a different mass dimension and different Hermiticity than $W_i$. So define instead the field
\beq
\eta_i = - \frac{i}{m} W_{0i}.
\eeq
This is the quantity that will appear directly in the bispinor. Note that in the momentum space and in the rest frame, that $\eta_i = - W_i$.
Now, express the equations of motion only in terms of $\eta_i$ and $W_i$, eliminating the other fields. (As defined, $W_{0i} = im\eta_i$.) Three of the nondynamic fields can be replaced directly with
\beq
W_{ij} = D_i W_j - D_j W_i.
\eeq
To find $W_0$, consider the second equation of motion with $\alpha=0$, and solve for $W_0$.
\beq
m^2 W_0 - ie[g-1] W^\nu F_{0\nu} + D^\mu W_{\mu 0} = 0,
\eeq
\beq
m^2 W_0 - ie[g-1] W^j F_{0j} + D^j W_{j0} = 0,
\eeq
\beq
W_0 = \frac{1}{m^2} \left( ie[g-1] W^j F_{0j} + D^j i m \eta_j \right ).
\eeq
The remaining equations of motion all somehow involve the time derivative.
From
\beq
W_{0i} = D_0 W_i - D_i W_0
\eeq
is obtained
\beq \label{eq:S1:wA}
i m \eta_i = D_0 W_i - D_i \frac{1}{m^2} \left( ie[g-1] W^j F_{0j} + D^j i m \eta_j \right ).
\eeq
And from the \eqref{eq:S1:ELeqB} equation of motion with $\alpha=i$:
\begin{eqnarray}
0 &=& m^2 W_i - ie [g-1] W^\nu F_{i \nu} + D^\mu W_{\mu i} , \\
&=& m^2 W_i - ie[g-1] \left( W^0 F_{i0} + W^j F_{ij} \right )
+ D^0 W_{0i} + D^j W_{ji} , \\
\label{eq:S1:etaA}
&=& m^2 W_i - ie[g-1] \left( \frac{1}{m^2} \left( ie[g-1] W^j F_{0j} + D^j im \eta_j \right ) F_{i0} + W^j F_{ij} \right )
\\&& + D^0 im \eta_i + D^j \left( D_i W_j - D_j W_i \right ) .
\end{eqnarray}
These can be solved for the quantities $D_0 \eta_i$ and $D_0 W_i$.
To descend to the lower energy theory, it will be most useful to write everything in terms of three vectors. Spatial vectors should be written with their indices naturally raised, while the derviative operator $\v{D}$ is naturally lowered. The components of $F_{\mu\nu}$ in terms of three vectors are:
\beq
F_{0i} = -E_i = E^i , \; F_{ij} = -\epsilon_{ijk} B^k .
\eeq
Then \eqref{eq:S1:etaA} becomes
\beq
\begin{split}
0 = & \, m^2 W_i - \frac{e^2 [g-1]^2}{m^2} W^j E^j E^i
- \frac{e [g-1]}{m} D_j \eta^j E^i
\\& + ie[g-1] \epsilon_{ijk} B^k W^j
+ D^0 (im\eta_i) + D^j (D_i W_j - D_j W_i).
\end{split}
\eeq
Or, writing all vector indices in the ``natural'' position, and writing contractions between such ``natural'' vectors as dot products,
\beq
\begin{split}
0 = \, &
- m^2 W_i - \frac{e^2 [g-1]^2}{m^2} E^i \v{E} \cdot \v{W}
- \frac{e [g-1]}{m} E^i \v{D} \cdot \gv{\eta}
\\& + ie[g-1] \epsilon_{ijk} B^k W^j
- D^0 (im\eta^i) + D_i \v{D} \cdot \v{W} - \v{D}^2 W^i .
\end{split}
\eeq
And likewise with \eqref{eq:S1:wA}
\beq
i m \eta_i = D_0 W_i - D_i \frac{1}{m^2} \left( ie[g-1] W^j E^j + D^j i m \eta_j \right ) ,
\eeq
which with natural indices is
\beq
-i m \eta^i = - D_0 W^i - D_i \frac{1}{m^2} \left( ie[g-1] \v{E} \cdot \v{W} + i m \v{D} \cdot \gv{\eta} \right ) .
\eeq
Next, solve for the quantities $iD_0 \eta^i$ and $iD_0 W^i$.
\beq
i D_0 W^i = - m \eta^i + D_i \frac{1}{m^2} \left( e[g-1] \v{E} \cdot \v{W} + m \v{D} \cdot \gv{\eta} \right ) ,
\eeq
\beq \begin{split}
i D_0 \eta^i = & - m W_i - \frac{e^2 [g-1]^2}{m^3} E^i \v{E} \cdot \v{W}
- \frac{e [g-1]}{m^2} E^i \v{D} \cdot \gv{\eta} \\
&+ \frac{ie[g-1]}{m} \epsilon_{ijk} B^k W^j
+ \frac{1}{m} \left( D_i \v{D} \cdot \v{W} - \v{D}^2 W^i \right ) .
\end{split} \eeq
Here are the desired equations for the dynamics of the $\eta$ and $W$. However, they are still not in the desired form \eqref{eq:S1:formofH}, because they are not written in terms of operators acting directly upon the fields. This is because the different components of the field are mixed. These different components correspond to different spin states of the particle, so their mixing can be written as the action of spin space operators on the fields. To explicitly disentangle the equations in this manner, it will be useful to first derive a couple of identities relating to these spin operators.
\subsection{Spin identities}
The spin matrix for a spin one particle can represented as:
\beq
(S^k)_{ij} = - i\epsilon_{ijk},
\eeq
which leads to the following identities:
\beq
(\v{a} \times \v{v})_i = -i (\v{S} \cdot \v{a})_{ij} v_j,
\eeq
\beq
a_i (\v{b} \cdot \v{v}) = \{ \v{a} \cdot \v{b} \; \delta_{ij} - (S^k S^\ell)_{ij} a^\ell b^k \} v_j.
\eeq
Using these identities
\beq
i D^0 \v{W} =
-\frac{1}{m^2} \{ \v{D} \cdot \v{E} - (\v{S} \cdot \v{E}) (\v{S} \cdot \v{D}) \} \v{W}
+ \frac{1}{m}\{ \v{D}^2 - (\v{S} \cdot \v{D})^2 \} \gv{\eta} + m \gv{\eta},
\eeq
and for the other equation
%TODO check order of D and E -- it matters!
\beq
i D_0 \gv{\eta} = m \v{W}
+ \frac{e^2 \lambda^2}{m^3} \{ \v{E}^2 - (\v{S} \cdot \v{E})^2 \} \v{W}
-\frac{1}{m^2} \{ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E}) (\v{S} \cdot \v{D}) \} \gv{\eta}
+ \frac{ e \lambda}{m} (\v{S} \cdot \v{B} ) \v{W}
- \frac{1}{m} (\v{S} \cdot \v{D})^2 \v{W} ,
\eeq
\beq
i D_0 \gv{\eta} = \left(
m
+ \frac{e^2 \lambda^2}{m^3} \{ \v{E}^2 - (\v{S} \cdot \v{E})^2 \}
- \frac{ e \lambda}{m} (\v{S} \cdot \v{B} )
- \frac{1}{m} (\v{S} \cdot \v{D})^2
\right ) \v{W}
+\frac{1}{m^2} \{ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E}) (\v{S} \cdot \v{D}) \} \gv{\eta} .
\eeq
Now that the equations are in the correct form, we can write them as follows:
%%TODO This is the correct form, but go back and make sure equations leading up to this don't have sign errors
%% Also, add the spin ids that produce the cross products.
\beq \label{eq:S1:M}
i D_0 \spinor{W}{\eta} = \Mblock{ M_{11} }{M_{12}}{M_{21}}{M_{22} }\spinor{W}{\eta},
\eeq
where the components of $M$ are
\beqa
M_{11} &=& [g-1] \frac{e}{m^2} \left [ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D} \right ] , \\
M_{12} &=& m
-\frac{1}{m} (\v{S} \cdot \v{D})^2
- [g-1] \frac{e}{m} \v{S} \cdot \v{B}
+ [g-1]^2 \frac{e^2}{m^3} \left [ \v{E}^2 - (\v{S} \cdot \v{E})^2 \right ] , \\
M_{21} &=&
m - \frac{1}{m}\left [ \v{D}^2 - (\v{S} \cdot \v{D})^2 + e \v{S} \cdot \v{B} \right ] , \\
M_{22} &=&
- [g-1] \frac{e}{m^2} \left [ \v{D} \cdot \v{E} - (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) + i \v{S} \cdot \v{D} \times \v{E} \right ] .
\eeqa
This leads to a relativistic Hamiltonian, but not one of quite the right form. The $\eta$ and $W$ do not correspond to the particle and antiparticle. To see this consider the rest frame where $D_i =0$, then the two components have equal magnitude. A transformation to a representation where the upper and lower components correspond to particle-antiparticle will be necessary. Since it is not yet in the final desired form, call the bispinor
\beq
\Psig' = \spinor{\eta}{W}.
\eeq
Also, it is clear that the matrix on the right hand side is not Hermitian in the traditional sense, and so the Hamiltonian would not be either. The necessary condition is that the Hamiltonian is Hermitian \emph{with respect to the inner product}. To discover what the inner product should look like, the electromagnetic current density of the charged particle will be investigated. Before transforming representation, this matter of Hermiticity will be dealt with.
\subsection{Current density }
The inner product will take two wave functions and map them onto a scalar. To be interpreted as a probability, the inner product must be Lorentz invariant. In standard quantum mechanics the inner product is $\langle \xi, \chi \rangle = \int d^3x \, \xi^\dagger \chi$. For the spinors $W$ and $\eta$ defined above, this will not be a Lorentz invariant quantity --- to discover such a quantity, consider electromagnetic current density. Since $Q = \int d^3x \, j_0$ is invariant, the form of $j_0$ it will suggest the correct form for the inner product.
The conserved current can be derived from the Lagrangian \eqref{eq:S1:LagrangianAnom}. The electromagnetic current corresponds to the transformation $ W_i \to e^{i \alpha}W_i $, which in infinitesimal form is:
\beq
W_\mu \to W_\mu + i \alpha W_\mu, \;
W_\mu^\dagger \to W_\mu^\dagger - i \alpha W_\mu^{\dagger}.
\eeq
The 4-current density will be:
\beq
j^{\sigma} = -i \pd {\mathcal{L} }{W_{\mu, \sigma}} W_\mu + i\pd {\mathcal{L} }{W^\dagger_{\mu, \sigma}} W^\dagger_\mu.
\eeq
Only one term in the Lagrangian contains derivatives of the field:
\beqa
\pd {\mathcal{L} }{W_{\alpha, \sigma}}
&=& \pd{}{W_{\alpha, \sigma}} \left \{ - \frac{1}{2} (D_\mu W_\nu - D_\nu W_\mu)^\dagger(D^\mu W^\nu - D^\nu W^\mu) \right \}\\
&=& - \frac{1}{2} (D_\mu W_\nu - D_\nu W_\mu)^\dagger (g_{\sigma \mu} g_{\alpha \nu} - g_{\sigma \nu}g_{\alpha \mu})\\
&=& - (D_\alpha W_\sigma - D_\sigma W_\alpha)^\dagger.
\eeqa
Likewise:
\beq \pd {\mathcal{L} }{W_{\alpha, \sigma}^\dagger}
= - (D_\alpha W_\sigma - D_\sigma W_\alpha).
\eeq
As before, define $W_{\mu \nu} = D_\mu W_\nu - D_\nu W_\mu$; then the 4-current and charge density are:
\beqa
j_\sigma &=& i W_{\sigma \mu}^\dagger W^{\mu} - i W_{\sigma \mu} {W^{\dagger}}^\mu ,\\
j_0 &=& i W_{0 \mu}^\dagger W^{\mu} - i W_{0 \mu} {W^{\dagger}}^\mu \\
&=& i W_{0 i}^\dagger W^i - i W_{0 i} {W^{\dagger}}^i ,
\eeqa
where the last equality follows from the antisymmetry of $W_{\mu \nu}$.
Now, previously was defined $\eta_i = -i W_{0i}/m$, so $W_{0i}^\dagger = -im \eta_i^\dagger$. In terms of this quantity, the current density is
\beq \label{eq:S1:j0}
j_0 = m (\eta_i^\dagger W^i + \eta_i {W^\dagger}^i ).
\eeq
Now the Hermiticity of the matrix above can be investigated in light of the inner product this suggests.
\subsection{Hermiticity and the inner product}
As already mentioned, it is clear from inspection that the matrix in \eqref{eq:S1:M} is not Hermitian in the standard sense. (Of the operators in use, the only one which is not self adjoint is $D_i^\dagger = - D_i$.) Noticing that
\beq
\left [ \v{E} \cdot \v{D} - (\v{S} \cdot \v{E})( \v{S} \cdot \v{D}) + i \v{S} \cdot \v{E} \times \v{D} \right]^\dagger
= - \left [ \v{D} \cdot \v{E} - (\v{S} \cdot \v{D}) (\v{S} \cdot \v{E}) + i \v{S} \cdot \v{D} \times \v{E} \right ] ,
\eeq
it can be seen that $H$ would have the general form
\beq
H =
\begin{pmatrix}
A & B \\
C & A^\dagger
\end{pmatrix},
\eeq
where the off diagonal blocks are Hermitian in the normal sense: $B^\dagger = B$ and $C^\dagger=C$.
An operator is defined as Hermitian with respect to a particular inner product. One generalisation of the normal inner product from quantum mechanics is found by allowing a weight matrix $\weight$ inserted between the wave functions:
\beq
\langle \xi, \chi \rangle = \int d^3x \, \xi^\dagger \weight \chi.
\eeq
In the usual product of quantum mechanics $\weight$ would be the identity matrix, but here it differs. Previously the conserved charge was derived. Writing \eqref{eq:S1:j0} in the form $\Psig'^\dagger \weight \Psig'$
\beq
j_0 = m [\eta^\dagger W + W^\dagger \eta]
= m \begin{pmatrix} \eta^\dagger & W^\dagger \end{pmatrix}
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\begin{pmatrix} \eta \\ W \end{pmatrix}.
\eeq
so if the weight is defined as $\weight= \left( \begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right )$, the inner product $\langle \Psig', \Psig \rangle$ will be necessarily be conserved.
An operator H is Hermitian with respect to this inner product if
\beq
\langle H\xi, \chi \rangle = \langle \xi, H\chi \rangle \to
\int d^3x \xi^\dagger H^\dagger \weight \chi = \int d^3x \xi^\dagger \weight H \chi.
\eeq
For this equality to hold, it is sufficient for $H^\dagger \weight = \weight H$. With $\weight$ as above, and $H=\left( \begin{smallmatrix} A & B \\ C & D \end{smallmatrix} \right )$ this condition reduces to
\beq
\begin{pmatrix} A^\dagger & C^\dagger \\ B^\dagger & D^\dagger \end{pmatrix}
=\begin{pmatrix} D & C \\ B & A \end{pmatrix}.
\eeq
The matrix in \eqref{eq:S1:M} fulfills exactly this requirement, and so is Hermitian with respect to this particular inner product.
\section{The nonrelativistic approximation}
Now that the issue of hermiticity has been dealt with, it is time to find a non-relativistic Hamiltonian from the equation \eqref{eq:S1:M}. First, write it explicitly as a Hamiltonian, replacing the derivative operator with $\gv{\pi} = \v{p} - e\v{A}$, so that $\v{D} = -i \gv{\pi}$. If the the components are labelled as follows:
\small
\beq \label{eq:S1:M}
H' \Psig' =
\Mblock{ H'_{11} }{H'_{12}} { H'_{21} } {H'_{22} } \spinor{W}{\eta}
\eeq
Then
\beqa
H'_{11} &=&
e\Phi + [g-1] \frac{e}{m^2} \left [ -i \v{E} \cdot \gv{\pi} + i (\v{S} \cdot \v{E})( \v{S} \cdot \gv{\pi}) + \v{S} \cdot \v{E} \times \v{\pi} \right ] \\
H'_{12} &=&
m +\frac{1}{m} (\v{S} \cdot \gv{\pi})^2
- [g-1] \frac{e}{m} \v{S} \cdot \v{B}
+ [g-1]^2 \frac{e^2}{m^3} \left [ \v{E}^2 - (\v{S} \cdot \v{E})^2 \right ] \\
H'_{21} &=& m
+ \frac{1}{m}\left [ \gv{\pi}^2 - (\v{S} \cdot \gv{\pi})^2 - e \v{S} \cdot \v{B} \right ] \\
H'_{22} &=&
e\Phi - [g-1] \frac{e}{m^2} \left [ - i\gv{\pi} \cdot \v{E} + i (\v{S} \cdot \gv{\pi}) (\v{S} \cdot \v{E}) + \v{S} \cdot \gv{\pi} \times \v{E} \right ]
\eeqa
\normalsize
That equation is written in a representation where the particle and anti-particle states are not separated. Even in the nonrelativistic limit, it strongly couples $\eta$ and $W$, because the off-diagonal terms are of $\mathcal{O}(m)$. To descend to a nonrelativistic picture, it will be most convenient if the lower component of $\Psig$ is, in that limit, only weakly coupled to the upper.
In the rest frame of the particle state (which should have $E=m$), $W = \eta$. Then, if the lower component was defined to be $\Psig_\ell = \eta - W$, it would vanish in the rest frame and be small compared to $\Psig_u$ in any nonrelativistic frame. The orthogonal upper component would then be $\Psig_u = \eta + W$. For an anti-particle state in the rest frame ($E= - m$, $W= - \eta$) and the upper component vanishes.
Implementing this transformation as a unitary transformation requires the matrix
\beq
U = \frac{1}{\sqrt {2}}
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\eeq
\small
(This transformation will transform the current to
$ j_0 = m (\Psig_u^\dagger \Psig_u - \Psig_\ell^\dagger \Psig_\ell) $
and the weight M, used in the inner product, to
$ M \to M' = U^\dagger M U = ( \begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}) $
The transformed Hamiltonian will of course be Hermitian with respect to the transformed inner product.)
\normalsize
After implementing this transformation, $H' \to H = U^\dagger H' U $. The Hamiltonian still contains off-diagonal elements, so the Schrodinger-like equation represents a pair of coupled equations for the upper and lower components of $\gv{\Psig}$. But the off-diagonal terms are small, so $\Psig_\ell$ can be considered small compared to $\Psig_u$. Solving for $\Psig_\ell$ in terms of $\Psig_u$ and the block components of $H$:
\begin{eqnarray*}
E \Psig_\ell &=& H_{21} \Psig_u + H_{22} \Psig_\ell \\
\Psig_\ell &=& (E - H_{22})^{-1} H_{21} \Psig_u
\end{eqnarray*}
This gives the exact formula:
\begin{eqnarray*}
E \Psig_u &=& \left( H_{11} + H_{12}[E-H_{22}]^{-1} H_{21} \right) \Psig_u
\end{eqnarray*}
However, we only need corrections to the magnetic moment of order $v^2$. This means we only need the Hamiltonian to at most order $mv^4$ or $(e/m) B v^2$. Examining the leading order terms of the matrix H, the diagonal elements are order m while the off-diagonal elements are order $mv^2$ or $(e/m) B$. To leading order the term $[E-H_{22}]^{-1}=\frac{1}{2m}$. So we'll need $H_{11}$ to $\mathcal{O}(v^4, (e/m)Bv^2)$, and $H_{12}$, $H_{21}$, and $[E-H_{22}]^{-1}$ each to only the leading order.
\[ E \Psig_u = \left( H_{11} + \frac{1}{2m}H_{12} H_{21} + \mathcal{O}(mv^6)\right) \Psig_u \]
The needed terms of H are, after performing the transformation:
\beqa
H_{11} &=& H'_{11} + H'_{12} + H'_{21} + H'_{22} \\
&\approx& m + e\Phi + \frac{\pi^2}{2m} - \frac{g}{2}\frac{e}{m} \v{S} \cdot \v{B}
- i (g-1)\frac{e}{2m^2}
\big [
\v{E} \cdot \gv{\pi} - (\v{S} \cdot \v{E})( \v{S} \cdot \gv{\pi})
\\&& + i \v{S} \cdot \v{E} \times \gv{\pi}
- \gv{\pi} \cdot \v{E} + (\v{S} \cdot \gv{\pi}) (\v{S} \cdot \v{E}) - i \v{S} \cdot \gv{\pi} \times \v{E}
\big ] \\
H_{12} &=& H'_{11} - H'_{12} + H'_{21} - H'_{22} \\
&\approx& - \frac{\pi^2}{2m} + \frac{1}{m}(\v{S} \cdot \gv{\pi})^2 - \frac{g-2}{2}\frac{e}{m} \v{S} \cdot \v{B}
\\
H_{21} &=& H'_{11} + H'_{12} - H'_{21} - H'_{22} \\
&\approx& \frac{\pi^2}{2m} - \frac{1}{m}(\v{S} \cdot \gv{\pi})^2 + \frac{g-2}{2}\frac{e}{m} \v{S} \cdot \v{B}
\eeqa
The product $H_{12}H_{21}$ is calculated in the appendix. To first order in the magnetic field strength the result \eqref{eq:A:crossterm} is:
\beq
\frac{1}{2m}H_{12}H_{21} = -\frac{1}{2m^3}\left(
\frac{ \gv{\pi}^4 } {4} - e \v{p}^2 \v{S} \cdot \v{B}
-\frac{g-2}{2}e (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p})
\right)
\eeq
So finally, the direct expression for $E \Psig_u$ is:
\small
\beqa E \Psig_u
&=&\Big \{ m + e\Phi + \frac{\gv{\pi}^2}{2m} - \frac{g}{2}\frac{e}{m} \v{S} \cdot \v{B}
- \frac{\gv{\pi}^4 } {8m^3}
+ \frac{ e \v{p}^2 (\v{S} \cdot \v{B}) }{2m^3}
+ (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p})
\\&&
+ (g-1)\frac{ie}{2m^2} \big [
\v{E} \cdot \gv{\pi} - (\v{S} \cdot \v{E}) (\v{S} \cdot \gv{\pi}) + i \v{S} \cdot \v{E} \times \gv{\pi}
- \gv{\pi} \cdot \v{E} + (\v{S} \cdot \gv{\pi}) (\v{S} \cdot \v{E}) - i \v{S} \cdot \gv{\pi} \times \v{E}
\big ]
\Big \}\Psig_u
\eeqa
\normalsize
The complicated expression in square brackets can be cleaned up a bit. First the Darwin type turn:
\beqa
\v{E} \cdot \gv{\pi} - \gv{\pi} \cdot \v{E}
&=& [E_i, \pi_i] \\
&=& [E_i, -i\partial_i] \\
&=& i(\partial_i E_i)
\eeqa
Then the term seemingly quadratic in spin (although some part will be reduced to terms linear in spin):
\beqa
(\v{S} \cdot \v{E}) (\v{S} \cdot \gv{\pi}) - (\v{S} \cdot \gv{\pi}) (\v{S} \cdot \v{E})
&=& S_i S_j E_i \pi_j - S_i S_j \pi_i E_j \\
&=& (S_i S_j) (E_i \pi_j - E_j \pi_i - [\pi_i, E_j]) \\
&=& [S_i, S_j](E_i \pi_j) - (S_i S_j)(-i \nabla_i E_j) \\
&=& (i\epsilon_{ijk}S_k)E_j \pi_i - (S_i S_j)(-i \nabla_i E_j) \\
&=& i \v{S} \cdot \v{E} \times \gv{\pi} + i S_i S_j \nabla_i E_j)
\eeqa
Finally the structure contracted with a linear spin term:
\beqa
(\v{E} \times \gv{\pi} - \gv{\pi} \times \v{E})_k
&=& \epsilon_{ijk}(E_i \pi_j - \pi_i E_j) \\
&=& \epsilon_{ijk}(E_i \pi_j + \pi_j E_i) \\
&=& \epsilon_{ijk}(2 E_i \pi_j + [\pi_i, E_j]) \\
&=& 2 \epsilon_{ijk} E_i \pi_j \\
&=& 2 (\v{E} \times \gv{\pi})_k
\eeqa
Using these identities and collecting terms, and then writing everything in terms of $g$ and $g-2$:
\small
\beqa
E \Psig_u
&=&\Bigg\{ m + e\Phi + \frac{\pi^2}{2m} - \frac{\pi^4 } {8m^3}
- \frac{e}{m} \v{S} \cdot \v{B} \left ( \frac{g}{2} - \frac{p^2}{2m^2} \right )
+ (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p})
\\&&
- (g-1)\frac{e}{2m^2}
\left [
\v{\nabla} \cdot \v{E}
- S_i S_j \nabla_i E_j +\v{S} \cdot \v{E} \times \gv{\pi}
\right ]
\Bigg\}\Psig_u \\
&=& \Bigg\{ m + e\Phi + \frac{\pi^2}{2m} - \frac{\pi^4 } {8m^3}
- \frac{g}{2}\frac{e}{m} \v{S} \cdot \v{B} \left ( 1 - \frac{p^2}{2m^2} \right )
- \frac{g-2}{2} \frac{e}{m} \frac{p^2}{2m^2} \v{S} \cdot \v{B}
\\&& + (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p})
- \left ( \frac{g}{2} + \frac{g-2}{2} \right) \frac{e}{2m^2}
\left [
\v{\nabla} \cdot \v{E}
- S_i S_j \nabla_i E_j +\v{S} \cdot \v{E} \times \gv{\pi}
\right ]
\Bigg\}\Psig_u
\eeqa
\normalsize
This is a Hamiltonian for the upper component of the bispinor, as desired. In the spin-half case, the Foldy-Wouthyusen transformation was necessary, going to a representation where all the physics up to the desired order is contained in the single spinor equation. However, to the needed order, it can be shown that the Hamiltonian above is correct.
\subsection{Schrodinger-like wave functions}
It is necessary to establish a connection between the upper component of the spinor $\Psig_u$ and the Schrodinger-like wave function $\phis$. Because the lower component of the bispinor is small but nonzero, it is not necessarily true that the above equation accurately captures the physics. As in spin-half, transformation to a basis where the lower component is truly negligible might be necessary.
However, here it can be shown that such a transformation will have no effect at the desired order. The transformation U would have the form::
$U = e^{iS} $ where S is Hermitian. Because the Hamiltonian is diagonal at leading order, S must be small, and the transformation will affect $\Psig_u$ as
\begin{eqnarray*}
\Psig_u \to \phis = (1 + \Delta)\Psig_u
\end{eqnarray*}
where $\Delta$ is some small operator. The probability density must be unaffected by this change, so:
On the one hand, with $\Psig_\ell = \epsilon \Psig_u$, $ \epsilon \sim \mathcal{O}(v^2) $
\beqa
\int d^3 x (\Psig_u^\dagger \Psig_u - {\Psig^\dagger}_\ell \Psig_\ell)
&=& \int d^3 x (\Psig_u^\dagger \Psig_u - (\epsilon {\Psig_u})^\dagger \epsilon \Psig_u) \\
&=& \int d^3 x \Psig_u^\dagger (1 + \mathcal{O}(v^4)) \Psig_u
\eeqa
And on the other hand:
\beqa
\int d^3 x \phis^{\dagger} \phis
&=& \int d^3 x ([1 + \Delta] \Psig_u)^\dagger (1+\Delta)\Psig_u \\
\eeqa
Comparing the two, it can be seen that $\Delta$ must be no larger than $\mathcal{O}(v^4)$. Now considering the new equation for $\phis$:
\beqa
(E -m)\Psig_u
&=& \left(H_{11} + \frac{1}{2m}H_{12} H_{21} \right) \Psig_u\\
(E-m)(1-\Delta)\phis
&=& \left(H_{11} + \frac{1}{2m}H_{12} H_{21} \right) (1-\Delta) \phis\\
(E-m)\phis
&=& (1 + \Delta)\left(H_{11} + \frac{1}{2m}H_{12} H_{21} \right) (1-\Delta) \phis
\eeqa
Since $H \sim \mathcal{O}(mv^2)$ and $\Delta \sim \mathcal{O}(v^4)$, to $\mathcal{O}(v^4)$, $\phis$ obeys exactly the same equation as $\Psig_u$:
\beqa
(E -m)\phis
&=& \left ( H_{11} + \frac{1}{2m} H_{12} H_{21} \right ) \phis \\
\eeqa
Because it obeys the same equation, it then follows that the Hamiltonian for $\phis$ is just that already found for $\Psig_u$:
\small \beqa
E \phis
&=&\left\{ m + e\Phi + \frac{\pi^2}{2m} - \frac{\pi^4 } {8m^3}
- \frac{e}{m} \v{S} \cdot \v{B} \left ( \frac{g}{2} - \frac{p^2}{2m^2} \right )
+ (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p}) \right. \\
&& \left.
- (g-1)\frac{e}{2m^2}
\left [
\v{\nabla} \cdot \v{E}
- S_i S_j \nabla_i E_j +\v{S} \cdot \v{E} \times \gv{\pi}
\right ]
\right\}\Psig_u \\
&=& \left\{ m + e\Phi + \frac{\pi^2}{2m} - \frac{\pi^4 } {8m^3}
- \frac{g}{2}\frac{e}{m} \v{S} \cdot \v{B} \left ( 1 - \frac{p^2}{2m^2} \right )
- \frac{g-2}{2} \frac{e}{m} \frac{p^2}{2m^2} \v{S} \cdot \v{B}
\right. \\
&& \left.
+ (g-2)\frac{e}{4m^3} (\v{S} \cdot \v{p}) (\v{B} \cdot \v{p})
- \left ( \frac{g}{2} + \frac{g-2}{2} \right) \frac{e}{2m^2}
\left [
\v{\nabla} \cdot \v{E}
- S_i S_j \nabla_i E_j +\v{S} \cdot \v{E} \times \gv{\pi}
\right ]
\right\}\phis
\eeqa \normalsize