-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgauss_legendre_rule.m
76 lines (57 loc) · 2.13 KB
/
gauss_legendre_rule.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
% Gauss-Legendre quadrature rule class
%
% q = gauss_legendre_rule(n) creates object q representing a Gauss-Legendre
% rule on [0,1] with n points.
%
% x = q.points() returns vector x containing the quadrature points.
%
% w = q.weights() returns vector w containing the corresponding quadrature
% weights.
%
% Example:
%
% sum(w.*f(x)) approximates the integral of f over the interval [0,1].
%
% Stuart C. Hawkins - 23 August 2021
% Copyright 2019-2022 Stuart C. Hawkins
%
% This file is part of TMATROM3
%
% TMATROM3 is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TMATROM3 is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TMATROM3. If not, see <http://www.gnu.org/licenses/>.
classdef gauss_legendre_rule < rule
properties
end
methods
%-----------------------------------------
% constructor
%-----------------------------------------
function self = gauss_legendre_rule(n)
% call parent constructor
self = self@rule(n);
end
function val = points(self)
% compute the Gauss-Legendre points
[pp,pw]=gauss_legendre(self.n-1);
% transform from x to theta coordinates... and note we are
% parametrising from [0,1] rather than [0,pi] so divide by pi
val = acos(pp(:))/pi;
end
function val = weights(self)
% compute the Gauss-Legendre points and weigths
[pp,pw]=gauss_legendre(self.n-1);
% return the weights
val = pw;
end
end
end