-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
57 lines (46 loc) · 2.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from myModel import myModel
from myModel import myLoss
from myTrain import myTrain
import torch
import myDataset
import argparse
import myUtils as utils
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--dataset', default='AAPD' ,type=str, metavar='PATH',
help='The dataset we use')
def main():
#Parameter
args = parser.parse_args()
dataset = args.dataset
checkpoint_file = 'checkpoint%s.pth.tar'%dataset
# config
config = utils.read_config("config_%s.yml"%dataset)
# Dataset
print('loading data %s'%dataset)
train_loader, test_loader, val_loader,embed, head_label, tail_label, label_num, vocab_size= myDataset.load_data(load_path=config.load_path,
data_token=config.data_token,
batch_size=config.batch_size,
quantile=config.quantile,
dataset=dataset)
print("load done")
# Model
model = myModel(batch_size=config.batch_size, lstm_hid_dim=config.lstm_hidden_dimension,scale = config.scale,
n_classes=label_num,vocab_size=vocab_size, embed_size=config.emb_size,
embeddings=embed, d_a=config.d_a)
if config.GPU:
torch.cuda.set_device(config.GPU_Number)
model.cuda()
#Binary CrossEntropy Loss
loss = torch.nn.BCELoss()
lmcl_loss = myLoss(lstm_hid_dim =config.lstm_hidden_dimension , n_classes =label_num , scale =config.scale , margin=0.2)
criterion = [loss, lmcl_loss]
#optimzer4nn
optimizer4nn = torch.optim.Adam(model.parameters(), lr=config.lr)
optimizer4loss = 0#torch.optim.Adam(lmcl_loss.parameters(), lr=config.lr)
optimizer = [optimizer4nn, optimizer4loss]
myTrain(model, train_loader, test_loader, val_loader, criterion, optimizer,
epochs=config.epochs, GPU=config.GPU, head_label=head_label, tail_label=tail_label,
lstm_hid_dim=config.lstm_hidden_dimension, n_classes=label_num, gamma=config.gamma,
checkpoint_file=checkpoint_file)
if __name__ == '__main__':
main()