-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
126 lines (96 loc) · 3.95 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import uuid
import flask
import urllib
from PIL import Image
from tensorflow.keras.models import load_model
from flask import Flask , render_template , request , send_file
from tensorflow.keras.preprocessing.image import load_img , img_to_array
app = Flask(__name__)
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
model = load_model(os.path.join(BASE_DIR , 'models/model.h5'))
ALLOWED_EXT = set(['JPG', 'jpg' , 'jpeg' , 'png' , 'jfif'])
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1] in ALLOWED_EXT
classes = ['Bacterial Spot', 'Early Blight', 'Healthy', 'Late Blight', 'Leaf Mold', 'Septoria Leaf Spot', 'Spider Mites', 'Target Spot', 'Mosaic Virus', 'Yellow Leaf Curl']
def predict(filename , model):
img = load_img(filename , target_size = (224 , 224))
img = img_to_array(img)
img = img.reshape(1 , 224 ,224 ,3)
img = img.astype('float32')
img = img/255.0
result = model.predict(img)
dict_result = {}
for i in range(10):
dict_result[result[0][i]] = classes[i]
res = result[0]
res.sort()
res = res[::-1]
prob = res[:3]
prob_result = []
class_result = []
for i in range(3):
prob_result.append((prob[i]*100).round(2))
class_result.append(dict_result[prob[i]])
return class_result , prob_result
@app.route('/')
def home():
return render_template("index.html")
@app.route('/success' , methods = ['GET' , 'POST'])
def success():
error = ''
target_img = os.path.join(os.getcwd() , 'static/images')
if request.method == 'POST':
if(request.form):
link = request.form.get('link')
try :
resource = urllib.request.urlopen(link)
unique_filename = str(uuid.uuid4())
filename = unique_filename+".jpg"
img_path = os.path.join(target_img , filename)
output = open(img_path , "wb")
output.write(resource.read())
output.close()
img = filename
class_result , prob_result = predict(img_path , model)
predictions = {
"class1":class_result[0],
"class2":class_result[1],
"class3":class_result[2],
"prob1": prob_result[0],
"prob2": prob_result[1],
"prob3": prob_result[2],
}
except Exception as e :
print(str(e))
error = 'This image from this site is not accesible or inappropriate input'
if(len(error) == 0):
return render_template('success.html' , img = img , predictions = predictions)
else:
return render_template('index.html' , error = error)
elif (request.files):
file = request.files['file']
if file and allowed_file(file.filename):
file.save(os.path.join(target_img , file.filename))
img_path = os.path.join(target_img , file.filename)
img = file.filename
class_result , prob_result = predict(img_path , model)
predictions = {
"class1":class_result[0],
"class2":class_result[1],
"class3":class_result[2],
"prob1": prob_result[0],
"prob2": prob_result[1],
"prob3": prob_result[2],
}
else:
error = "Please upload images of jpg , jpeg and png extension only"
if(len(error) == 0):
return render_template('success.html' , img = img , predictions = predictions)
else:
return render_template('index.html' , error = error)
else:
return render_template('index.html')
if __name__ == "__main__":
app.run(debug = True)