-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpreprocess.py
167 lines (134 loc) · 5.16 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from pathlib import Path
import matplotlib.pyplot as plt
from tqdm import tqdm
import PIL
import pickle
import os
import argparse
import librosa
import librosa.display
import random
parser = argparse.ArgumentParser()
parser.add_argument('--train_df_path', type=str, default="../input/train_label.csv")
parser.add_argument('--test_dir', type=str, default="../input/Public_Test/Public_Test/")
parser.add_argument('--train_dir', type=str, default="../input/Public_Test/Public_Test/")
parser.add_argument('--train_output_path', type=str, default="./data/mels_train.pkl")
parser.add_argument('--test_output_path', type=str, default="./data/mels_test.pkl")
args = parser.parse_args()
train_df = pd.read_csv(args.train_df_path)
test_fns = sorted(os.listdir(args.test_dir))
test_df = pd.DataFrame()
test_df["File"] = test_fns
def read_audio(conf, pathname, trim_long_data):
y, sr = librosa.load(pathname, sr=conf.sampling_rate)
# trim silence
if 0 < len(y): # workaround: 0 length causes error
y, _ = librosa.effects.trim(y) # trim, top_db=default(60)
else:
print(f"found zero length audio {pathname}")
y = np.zeros((conf.samples,), np.float32)
# make it unified length to conf.samples
if len(y) > conf.samples: # long enough
if trim_long_data:
y = y[0:0 + conf.samples]
else: # pad blank
leny = len(y)
padding = conf.samples - len(y) # add padding at both ends
offset = padding // 2
y = np.pad(y, (offset, conf.samples - len(y) - offset), conf.padmode)
return y
def audio_to_melspectrogram(conf, audio):
spectrogram = librosa.feature.melspectrogram(audio,
sr=conf.sampling_rate,
n_mels=conf.n_mels,
hop_length=conf.hop_length,
n_fft=conf.n_fft,
fmin=conf.fmin,
fmax=conf.fmax)
spectrogram = librosa.power_to_db(spectrogram)
spectrogram = spectrogram.astype(np.float32)
return spectrogram
def show_melspectrogram(conf, mels, title='Log-frequency power spectrogram'):
librosa.display.specshow(mels, x_axis='time', y_axis='mel',
sr=conf.sampling_rate, hop_length=conf.hop_length,
fmin=conf.fmin, fmax=conf.fmax)
plt.colorbar(format='%+2.0f dB')
plt.title(title)
plt.show()
def read_as_melspectrogram(conf, pathname, trim_long_data):
x = read_audio(conf, pathname, trim_long_data)
mels = audio_to_melspectrogram(conf, x)
return mels
class conf:
sampling_rate = 16000
duration = 2 # sec
hop_length = 125 * duration # to make time steps 128
fmin = 20
fmax = sampling_rate // 2
n_mels = 128
n_fft = n_mels * 20
padmode = 'constant'
samples = sampling_rate * duration
def get_default_conf():
return conf
def set_fastai_random_seed(seed=42):
# https://docs.fast.ai/dev/test.html#getting-reproducible-results
# python RNG
random.seed(seed)
# pytorch RNGs
import torch
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
# numpy RNG
import numpy as np
np.random.seed(seed)
def mono_to_color(X, mean=None, std=None, norm_max=None, norm_min=None, eps=1e-6):
# Stack X as [X,X,X]
X = np.stack([X, X, X], axis=-1)
# Standardize
mean = mean or X.mean()
X = X - mean
std = std or X.std()
Xstd = X / (std + eps)
_min, _max = Xstd.min(), Xstd.max()
norm_max = norm_max or _max
norm_min = norm_min or _min
if (_max - _min) > eps:
# Normalize to [0, 255]
V = Xstd
V[V < norm_min] = norm_min
V[V > norm_max] = norm_max
V = 255 * (V - norm_min) / (norm_max - norm_min)
V = V.astype(np.uint8)
else:
# Just zero
V = np.zeros_like(Xstd, dtype=np.uint8)
return V
def convert_wav_to_image(df, source):
X = []
for i, row in tqdm(df.iterrows(), total=len(df)):
x = read_as_melspectrogram(conf, source / str(row.File), trim_long_data=False)
x_color = mono_to_color(x)
X.append(x_color)
return X
def save_as_pkl_binary(obj, filename):
"""Save object as pickle binary file.
Thanks to https://stackoverflow.com/questions/19201290/how-to-save-a-dictionary-to-a-file/32216025
"""
with open(filename, 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_pkl(filename):
"""Load pickle object from file."""
with open(filename, 'rb') as f:
return pickle.load(f)
conf = get_default_conf()
def convert_dataset(df, source_folder, filename):
X = convert_wav_to_image(df, source=source_folder)
save_as_pkl_binary(X, filename)
print(f'Created {filename}')
return X
convert_dataset(train_df, Path(args.train_dir), args.train_output_path)
convert_dataset(test_df, Path(args.test_dir), args.test_output_path)