-
Notifications
You must be signed in to change notification settings - Fork 1
/
Calib_Results_old0.m
171 lines (135 loc) · 7.39 KB
/
Calib_Results_old0.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
% Intrinsic and Extrinsic Camera Parameters
%
% This script file can be directly excecuted under Matlab to recover the camera intrinsic and extrinsic parameters.
% IMPORTANT: This file contains neither the structure of the calibration objects nor the image coordinates of the calibration points.
% All those complementary variables are saved in the complete matlab data file Calib_Results.mat.
% For more information regarding the calibration model visit http://www.vision.caltech.edu/bouguetj/calib_doc/
%-- Focal length:
fc = [ 656.729909635027750 ; 657.135160930409370 ];
%-- Principal point:
cc = [ 302.971317863060510 ; 243.566801860983190 ];
%-- Skew coefficient:
alpha_c = 0.000000000000000;
%-- Distortion coefficients:
kc = [ -0.256220988935246 ; 0.132149022132478 ; -0.000289166481323 ; 0.000032397893284 ; 0.000000000000000 ];
%-- Focal length uncertainty:
fc_error = [ 0.353999221050904 ; 0.380393358173194 ];
%-- Principal point uncertainty:
cc_error = [ 0.714883890724601 ; 0.654599432496228 ];
%-- Skew coefficient uncertainty:
alpha_c_error = 0.000000000000000;
%-- Distortion coefficients uncertainty:
kc_error = [ 0.002803812118638 ; 0.011426942898206 ; 0.000148198921773 ; 0.000147333570730 ; 0.000000000000000 ];
%-- Image size:
nx = 640;
ny = 480;
%-- Various other variables (may be ignored if you do not use the Matlab Calibration Toolbox):
%-- Those variables are used to control which intrinsic parameters should be optimized
n_ima = 20; % Number of calibration images
est_fc = [ 1 ; 1 ]; % Estimation indicator of the two focal variables
est_aspect_ratio = 1; % Estimation indicator of the aspect ratio fc(2)/fc(1)
center_optim = 1; % Estimation indicator of the principal point
est_alpha = 0; % Estimation indicator of the skew coefficient
est_dist = [ 1 ; 1 ; 1 ; 1 ; 0 ]; % Estimation indicator of the distortion coefficients
%-- Extrinsic parameters:
%-- The rotation (omc_kk) and the translation (Tc_kk) vectors for every calibration image and their uncertainties
%-- Image #1:
omc_1 = [ -7.919905e-001 ; 5.891928e-001 ; 1.453960e+000 ];
Tc_1 = [ 1.795877e+002 ; -6.604197e+001 ; 8.932561e+002 ];
omc_error_1 = [ 1.273471e-003 ; 1.229094e-003 ; 6.123355e-004 ];
Tc_error_1 = [ 9.731394e-001 ; 8.999780e-001 ; 4.837645e-001 ];
%-- Image #2:
omc_2 = [ -5.131713e-001 ; 3.242306e-001 ; 1.554716e+000 ];
Tc_2 = [ 2.023953e+002 ; -1.400762e+002 ; 7.954136e+002 ];
omc_error_2 = [ 1.424056e-003 ; 1.360310e-003 ; 4.228895e-004 ];
Tc_error_2 = [ 8.701605e-001 ; 8.035621e-001 ; 4.888907e-001 ];
%-- Image #3:
omc_3 = [ -4.374104e-001 ; 4.125089e-001 ; 1.700209e+000 ];
Tc_3 = [ 2.296202e+002 ; -1.159383e+002 ; 7.640230e+002 ];
omc_error_3 = [ 1.455389e-003 ; 1.409073e-003 ; 4.160391e-004 ];
Tc_error_3 = [ 8.356247e-001 ; 7.728077e-001 ; 5.046977e-001 ];
%-- Image #4:
omc_4 = [ -1.555188e-001 ; 8.453742e-001 ; 1.624473e+000 ];
Tc_4 = [ 2.601936e+002 ; -1.572415e+002 ; 6.227101e+002 ];
omc_error_4 = [ 1.311502e-003 ; 1.249687e-003 ; 4.707747e-004 ];
Tc_error_4 = [ 6.857945e-001 ; 6.427403e-001 ; 5.081308e-001 ];
%-- Image #5:
omc_5 = [ -1.107290e+000 ; 2.525214e-001 ; 1.930879e+000 ];
Tc_5 = [ 1.836656e+002 ; -1.423354e+001 ; 8.186299e+002 ];
omc_error_5 = [ 1.304839e-003 ; 1.251030e-003 ; 7.185983e-004 ];
Tc_error_5 = [ 8.964550e-001 ; 8.176592e-001 ; 4.349496e-001 ];
%-- Image #6:
omc_6 = [ 5.142355e-001 ; -6.610449e-001 ; 1.608919e+000 ];
Tc_6 = [ 2.072603e+002 ; -5.308103e+001 ; 4.894862e+002 ];
omc_error_6 = [ 1.220525e-003 ; 1.248737e-003 ; 5.329548e-004 ];
Tc_error_6 = [ 5.359791e-001 ; 5.028404e-001 ; 4.125611e-001 ];
%-- Image #7:
omc_7 = [ -7.892616e-002 ; -9.692626e-001 ; 1.427574e+000 ];
Tc_7 = [ 2.003046e+002 ; -1.534543e+002 ; 6.487295e+002 ];
omc_error_7 = [ 1.165527e-003 ; 1.192999e-003 ; 5.764377e-004 ];
Tc_error_7 = [ 7.079008e-001 ; 6.576610e-001 ; 4.594245e-001 ];
%-- Image #8:
omc_8 = [ -1.722180e-001 ; -1.003898e+000 ; 1.379775e+000 ];
Tc_8 = [ 9.233322e+001 ; -1.937328e+002 ; 6.909754e+002 ];
omc_error_8 = [ 1.160537e-003 ; 1.167393e-003 ; 5.390021e-004 ];
Tc_error_8 = [ 7.573111e-001 ; 6.919347e-001 ; 4.399336e-001 ];
%-- Image #9:
omc_9 = [ 8.378402e-001 ; 2.950196e-001 ; 1.828596e+000 ];
Tc_9 = [ 2.568347e+002 ; -7.665554e+001 ; 5.268105e+002 ];
omc_error_9 = [ 1.459590e-003 ; 1.280206e-003 ; 5.397312e-004 ];
Tc_error_9 = [ 6.089906e-001 ; 5.597024e-001 ; 5.680761e-001 ];
%-- Image #10:
omc_10 = [ 6.472856e-001 ; 1.637423e-001 ; 1.827765e+000 ];
Tc_10 = [ 2.712530e+002 ; -1.732524e+002 ; 7.087108e+002 ];
omc_error_10 = [ 1.755578e-003 ; 1.618545e-003 ; 4.488878e-004 ];
Tc_error_10 = [ 8.174204e-001 ; 7.423453e-001 ; 7.484631e-001 ];
%-- Image #11:
omc_11 = [ 4.151426e-001 ; -3.892692e-001 ; 1.671372e+000 ];
Tc_11 = [ 2.056282e+002 ; -1.876928e+002 ; 7.103334e+002 ];
omc_error_11 = [ 1.580762e-003 ; 1.604730e-003 ; 4.005392e-004 ];
Tc_error_11 = [ 7.956902e-001 ; 7.439635e-001 ; 6.129136e-001 ];
%-- Image #12:
omc_12 = [ 3.547478e-001 ; -4.110213e-001 ; 1.660842e+000 ];
Tc_12 = [ 2.236668e+002 ; -1.384292e+002 ; 6.266713e+002 ];
omc_error_12 = [ 1.438950e-003 ; 1.456459e-003 ; 3.862142e-004 ];
Tc_error_12 = [ 6.950799e-001 ; 6.515819e-001 ; 5.304100e-001 ];
%-- Image #13:
omc_13 = [ 2.535253e-001 ; -4.598266e-001 ; 1.635112e+000 ];
Tc_13 = [ 2.227719e+002 ; -1.215015e+002 ; 5.965092e+002 ];
omc_error_13 = [ 1.377140e-003 ; 1.391134e-003 ; 3.733036e-004 ];
Tc_error_13 = [ 6.570897e-001 ; 6.157464e-001 ; 4.892765e-001 ];
%-- Image #14:
omc_14 = [ 2.221855e-001 ; -4.476351e-001 ; 1.624032e+000 ];
Tc_14 = [ 2.317075e+002 ; -1.200927e+002 ; 5.455801e+002 ];
omc_error_14 = [ 1.333785e-003 ; 1.346173e-003 ; 3.581107e-004 ];
Tc_error_14 = [ 6.013092e-001 ; 5.663797e-001 ; 4.615915e-001 ];
%-- Image #15:
omc_15 = [ 1.673686e-002 ; -3.568385e-001 ; 1.621002e+000 ];
Tc_15 = [ 1.519348e+002 ; -1.214338e+002 ; 5.528732e+002 ];
omc_error_15 = [ 1.370889e-003 ; 1.379986e-003 ; 2.400232e-004 ];
Tc_error_15 = [ 6.065489e-001 ; 5.598634e-001 ; 4.048816e-001 ];
%-- Image #16:
omc_16 = [ -1.525520e-001 ; 1.307696e-001 ; 1.777563e+000 ];
Tc_16 = [ 3.360911e+002 ; -9.585858e+001 ; 6.927143e+002 ];
omc_error_16 = [ 1.772250e-003 ; 1.814731e-003 ; 2.319725e-004 ];
Tc_error_16 = [ 7.593847e-001 ; 7.223693e-001 ; 6.028774e-001 ];
%-- Image #17:
omc_17 = [ 6.676613e-001 ; -3.020697e-001 ; 1.693245e+000 ];
Tc_17 = [ 2.099974e+002 ; -5.453954e+001 ; 4.326275e+002 ];
omc_error_17 = [ 1.284675e-003 ; 1.270185e-003 ; 4.856763e-004 ];
Tc_error_17 = [ 4.795194e-001 ; 4.533578e-001 ; 4.195951e-001 ];
%-- Image #18:
omc_18 = [ 1.097049e+000 ; -2.874409e-001 ; 1.632555e+000 ];
Tc_18 = [ 1.253539e+002 ; -2.324941e+001 ; 3.188495e+002 ];
omc_error_18 = [ 1.234451e-003 ; 1.140129e-003 ; 6.753095e-004 ];
Tc_error_18 = [ 3.535408e-001 ; 3.296666e-001 ; 3.313556e-001 ];
%-- Image #19:
omc_19 = [ 1.314479e-001 ; -1.086395e+000 ; 1.384966e+000 ];
Tc_19 = [ 1.903352e+002 ; -1.734039e+002 ; 5.145299e+002 ];
omc_error_19 = [ 1.092004e-003 ; 1.145107e-003 ; 6.095462e-004 ];
Tc_error_19 = [ 5.672401e-001 ; 5.272734e-001 ; 4.017548e-001 ];
%-- Image #20:
omc_20 = [ -2.942200e-001 ; -1.149947e+000 ; 1.244088e+000 ];
Tc_20 = [ 6.643973e+001 ; -2.202996e+002 ; 6.564769e+002 ];
omc_error_20 = [ 1.097545e-003 ; 1.108216e-003 ; 6.088328e-004 ];
Tc_error_20 = [ 7.231942e-001 ; 6.557614e-001 ; 4.197790e-001 ];