-
Notifications
You must be signed in to change notification settings - Fork 1
/
click_ima_calib_fisheye_no_read.m
300 lines (246 loc) · 10.2 KB
/
click_ima_calib_fisheye_no_read.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
if ~exist('rosette_calibration','var'),
rosette_calibration = 0;
end;
% Rough estimates for principal point and focal length:
fg = [1009.661057548567 1009.706970843858 ]';
cg = [ 1031.688786545889 1288.395050759215]';
kg = [-0.054285891395760 -0.026812583950935 0 0]';
if exist(['wintx_' num2str(kk)]),
eval(['wintxkk = wintx_' num2str(kk) ';']);
if ~isempty(wintxkk) & ~isnan(wintxkk),
eval(['wintx = wintx_' num2str(kk) ';']);
eval(['winty = winty_' num2str(kk) ';']);
end;
end;
if (rosette_calibration),
wintx = 20;
winty = 20;
end;
fprintf(1,'Using (wintx,winty)=(%d,%d) - Window size = %dx%d (Note: To reset the window size, run script clearwin)\n',wintx,winty,2*wintx+1,2*winty+1);
grid_success = 0;
while (~grid_success)
figure(2); clf;
image(I);
axis image;
colormap(map);
set(2,'color',[1 1 1]);
title(['Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image ' num2str(kk)]);
disp('Click on the four extreme corners of the rectangular complete pattern (the first clicked corner is the origin)...');
x= [];y = [];
figure(2); hold on;
for count = 1:4,
[xi,yi] = ginput4(1);
[xxi] = cornerfinder([xi;yi],I,winty,wintx);
xi = xxi(1);
yi = xxi(2);
figure(2);
plot(xi,yi,'+','color',[ 1.000 0.314 0.510 ],'linewidth',2);
plot(xi + [wintx+.5 -(wintx+.5) -(wintx+.5) wintx+.5 wintx+.5],yi + [winty+.5 winty+.5 -(winty+.5) -(winty+.5) winty+.5],'-','color',[ 1.000 0.314 0.510 ],'linewidth',2);
x = [x;xi];
y = [y;yi];
plot(x,y,'-','color',[ 1.000 0.314 0.510 ],'linewidth',2);
drawnow;
end;
plot([x;x(1)],[y;y(1)],'-','color',[ 1.000 0.314 0.510 ],'linewidth',2);
drawnow;
hold off;
[Xc,good,bad,type] = cornerfinder([x';y'],I,winty,wintx); % the four corners
x = Xc(1,:)';
y = Xc(2,:)';
% Sort the corners:
x_mean = mean(x);
y_mean = mean(y);
x_v = x - x_mean;
y_v = y - y_mean;
theta = atan2(-y_v,x_v);
[junk,ind] = sort(theta);
[junk,ind] = sort(mod(theta-theta(1),2*pi));
ind = ind([4 3 2 1]); %-> New: the Z axis is pointing uppward
x = x(ind);
y = y(ind);
if (rosette_calibration && (kk < 17))
% Enforce the ordering convention for the Rosette calibration.
c_ima = [nx/2 + 0.5 ; ny/2 + 0.5];
vects = [x'-c_ima(1) ; y'-c_ima(2)];
r = sqrt(sum(vects.^2));
[r_junk,ind_sort_r] = sort(r);
ind_23 = ind_sort_r(1:2);
ind_14 = ind_sort_r(3:4);
if det(vects(:,ind_23))<0
ind2 = ind_23(1);
ind3 = ind_23(2);
else
ind2 = ind_23(2);
ind3 = ind_23(1);
end;
if det(vects(:,ind_14))<0
ind1 = ind_14(1);
ind4 = ind_14(2);
else
ind1 = ind_14(2);
ind4 = ind_14(1);
end;
ind_resort = [ind1;ind2;ind3;ind4];
x = x(ind_resort);
y = y(ind_resort);
end;
x1= x(1); x2 = x(2); x3 = x(3); x4 = x(4);
y1= y(1); y2 = y(2); y3 = y(3); y4 = y(4);
% Find center:
p_center = cross(cross([x1;y1;1],[x3;y3;1]),cross([x2;y2;1],[x4;y4;1]));
x5 = p_center(1)/p_center(3);
y5 = p_center(2)/p_center(3);
% center on the X axis:
x6 = (x3 + x4)/2;
y6 = (y3 + y4)/2;
% center on the Y axis:
x7 = (x1 + x4)/2;
y7 = (y1 + y4)/2;
% Direction of displacement for the X axis:
vX = [x6-x5;y6-y5];
vX = vX / norm(vX);
% Direction of displacement for the X axis:
vY = [x7-x5;y7-y5];
vY = vY / norm(vY);
% Direction of diagonal:
vO = [x4 - x5; y4 - y5];
vO = vO / norm(vO);
delta = 30;
figure(2); image(I);
axis image;
colormap(map);
hold on;
plot([x;x(1)],[y;y(1)],'g-');
plot(x,y,'og');
hx=text(x6 + delta * vX(1) ,y6 + delta*vX(2),'X');
set(hx,'color','g','Fontsize',14);
hy=text(x7 + delta*vY(1), y7 + delta*vY(2),'Y');
set(hy,'color','g','Fontsize',14);
hO=text(x4 + delta * vO(1) ,y4 + delta*vO(2),'O','color','g','Fontsize',14);
for iii = 1:4,
text(x(iii),y(iii),num2str(iii));
end;
hold off;
if manual_squares,
n_sq_x = input(['Number of squares along the X direction ([]=' num2str(n_sq_x_default) ') = ']); %6
if isempty(n_sq_x), n_sq_x = n_sq_x_default; end;
n_sq_y = input(['Number of squares along the Y direction ([]=' num2str(n_sq_y_default) ') = ']); %6
if isempty(n_sq_y), n_sq_y = n_sq_y_default; end;
grid_success = 1;
else
% Try to automatically count the number of squares in the grid
if (rosette_calibration)
win_count = 10;
else
win_count = wintx;
end;
n_sq_x1 = count_squares_fisheye_distorted(I,x1,y1,x2,y2,win_count, fg, cg, kg);
n_sq_x2 = count_squares_fisheye_distorted(I,x3,y3,x4,y4,win_count, fg, cg, kg);
n_sq_y1 = count_squares_fisheye_distorted(I,x2,y2,x3,y3,win_count, fg, cg, kg);
n_sq_y2 = count_squares_fisheye_distorted(I,x4,y4,x1,y1,win_count, fg, cg, kg);
%n_sq_x1 = count_squares(I,x1,y1,x2,y2,wintx);
%n_sq_x2 = count_squares(I,x3,y3,x4,y4,wintx);
%n_sq_y1 = count_squares(I,x2,y2,x3,y3,wintx);
%n_sq_y2 = count_squares(I,x4,y4,x1,y1,wintx);
% If could not count the number of squares, enter manually
if (n_sq_x1~=n_sq_x2)|(n_sq_y1~=n_sq_y2),
if ~rosette_calibration,
disp('Could not count the number of squares in the grid. Enter manually.');
n_sq_x = input(['Number of squares along the X direction ([]=' num2str(n_sq_x_default) ') = ']); %6
if isempty(n_sq_x), n_sq_x = n_sq_x_default; end;
n_sq_y = input(['Number of squares along the Y direction ([]=' num2str(n_sq_y_default) ') = ']); %6
if isempty(n_sq_y), n_sq_y = n_sq_y_default; end;
grid_success = 1;
else
grid_success = 0;
end;
else
n_sq_x = n_sq_x1;
n_sq_y = n_sq_y1;
grid_success = 1;
end;
end;
if ~grid_success
fprintf(1,'Invalid grid. Try again.\n');
end;
end;
n_sq_x_default = n_sq_x;
n_sq_y_default = n_sq_y;
if (exist('dX')~=1)|(exist('dY')~=1), % This question is now asked only once
% Enter the size of each square
dX = input(['Size dX of each square along the X direction ([]=' num2str(dX_default) 'mm) = ']);
dY = input(['Size dY of each square along the Y direction ([]=' num2str(dY_default) 'mm) = ']);
if isempty(dX), dX = dX_default; else dX_default = dX; end;
if isempty(dY), dY = dY_default; else dY_default = dY; end;
else
fprintf(1,['Size of each square along the X direction: dX=' num2str(dX) 'mm\n']);
fprintf(1,['Size of each square along the Y direction: dY=' num2str(dY) 'mm (Note: To reset the size of the squares, clear the variables dX and dY)\n']);
end;
x_n = (x - 1 - cg(1))/fg(1);
y_n = (y - 1 - cg(2))/fg(2);
[x_pn] = comp_fisheye_distortion([x_n' ; y_n'],kg);
% Compute the inside points through computation of the planar homography (collineation)
a00 = [x_pn(1,1);x_pn(2,1);1];
a10 = [x_pn(1,2);x_pn(2,2);1];
a11 = [x_pn(1,3);x_pn(2,3);1];
a01 = [x_pn(1,4);x_pn(2,4);1];
% Compute the planar collineation: (return the normalization matrix as well)
[Homo,Hnorm,inv_Hnorm] = compute_homography([a00 a10 a11 a01],[0 1 1 0;0 0 1 1;1 1 1 1]);
% Build the grid using the planar collineation:
x_l = ((0:n_sq_x)'*ones(1,n_sq_y+1))/n_sq_x;
y_l = (ones(n_sq_x+1,1)*(0:n_sq_y))/n_sq_y;
pts = [x_l(:) y_l(:) ones((n_sq_x+1)*(n_sq_y+1),1)]';
XXpn = Homo*pts;
XXpn = XXpn(1:2,:) ./ (ones(2,1)*XXpn(3,:));
XX = apply_fisheye_distortion(XXpn,kg);
XX(1,:) = fg(1)*XX(1,:) + cg(1) + 1;
XX(2,:) = fg(2)*XX(2,:) + cg(2) + 1;
% Complete size of the rectangle
W = n_sq_x*dX;
L = n_sq_y*dY;
Np = (n_sq_x+1)*(n_sq_y+1);
disp('Corner extraction...');
grid_pts = cornerfinder(XX,I,winty,wintx); %%% Finds the exact corners at every points!
grid_pts = grid_pts - 1; % subtract 1 to bring the origin to (0,0) instead of (1,1) in matlab (not necessary in C)
ind_corners = [1 n_sq_x+1 (n_sq_x+1)*n_sq_y+1 (n_sq_x+1)*(n_sq_y+1)]; % index of the 4 corners
ind_orig = (n_sq_x+1)*n_sq_y + 1;
xorig = grid_pts(1,ind_orig);
yorig = grid_pts(2,ind_orig);
dxpos = mean([grid_pts(:,ind_orig) grid_pts(:,ind_orig+1)]');
dypos = mean([grid_pts(:,ind_orig) grid_pts(:,ind_orig-n_sq_x-1)]');
x_box_kk = [grid_pts(1,:)-(wintx+.5);grid_pts(1,:)+(wintx+.5);grid_pts(1,:)+(wintx+.5);grid_pts(1,:)-(wintx+.5);grid_pts(1,:)-(wintx+.5)];
y_box_kk = [grid_pts(2,:)-(winty+.5);grid_pts(2,:)-(winty+.5);grid_pts(2,:)+(winty+.5);grid_pts(2,:)+(winty+.5);grid_pts(2,:)-(winty+.5)];
figure(3);
image(I); axis image; colormap(map); hold on;
plot(grid_pts(1,:)+1,grid_pts(2,:)+1,'r+');
plot(x_box_kk+1,y_box_kk+1,'-b');
plot(grid_pts(1,ind_corners)+1,grid_pts(2,ind_corners)+1,'mo');
plot(xorig+1,yorig+1,'*m');
h = text(xorig+delta*vO(1),yorig+delta*vO(2),'O');
set(h,'Color','m','FontSize',14);
h2 = text(dxpos(1)+delta*vX(1),dxpos(2)+delta*vX(2),'dX');
set(h2,'Color','g','FontSize',14);
h3 = text(dypos(1)+delta*vY(1),dypos(2)+delta*vY(2),'dY');
set(h3,'Color','g','FontSize',14);
xlabel('Xc (in camera frame)');
ylabel('Yc (in camera frame)');
title('Extracted corners');
zoom on;
drawnow;
hold off;
Xi = reshape(([0:n_sq_x]*dX)'*ones(1,n_sq_y+1),Np,1)';
Yi = reshape(ones(n_sq_x+1,1)*[n_sq_y:-1:0]*dY,Np,1)';
Zi = zeros(1,Np);
Xgrid = [Xi;Yi;Zi];
% All the point coordinates (on the image, and in 3D) - for global optimization:
x = grid_pts;
X = Xgrid;
% Saves all the data into variables:
eval(['dX_' num2str(kk) ' = dX;']);
eval(['dY_' num2str(kk) ' = dY;']);
eval(['wintx_' num2str(kk) ' = wintx;']);
eval(['winty_' num2str(kk) ' = winty;']);
eval(['x_' num2str(kk) ' = x;']);
eval(['X_' num2str(kk) ' = X;']);
eval(['n_sq_x_' num2str(kk) ' = n_sq_x;']);
eval(['n_sq_y_' num2str(kk) ' = n_sq_y;']);