-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPracticalMachineLearning.html
494 lines (405 loc) · 195 KB
/
PracticalMachineLearning.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Practical Machine Learning Project Write up</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h2>Practical Machine Learning Project Write up</h2>
<p>We first consider the dataset and see what are the variables which are being used in the model. We note that many of the elements being used are actually descriptive statistics of the observations done for every window of the data. Also these descriptive statistics ( like average, max, min, amplitude, skewness, kurtosis, standard deviation, variance) are present for only a few of the rows - i.e. rows which are having new_window=yes. We omit all those columns which are these statistical observations for our predictions. </p>
<pre><code class="r"># set up environment
options(warn=-1)
library(lattice)
library(caret)
library(rattle)
library(randomForest)
library(cvTools)
library(png)
library(grid)
library(rpart.plot)
library(RColorBrewer)
library(rpart)
# remove statistics columns
pml.training <- read.csv("C:/SujoyRc/Temp/Coursera/pml-training.csv")
pml.testing <- read.csv("C:/SujoyRc/Temp/Coursera/pml-testing.csv")
</code></pre>
<p>For simplicity of coding we create a new dataset removing these columns.We can also confirm that none of the other columns will have any NAs (and thus no rows will be excluded from our analysis)</p>
<pre><code class="r">cols_exclude_pattern<-c("max","min","skewness","kurtosis","avg","var","stddev","amplitude")
pml_use<-pml.training[ , -grep(paste(cols_exclude_pattern,collapse="|"),names(pml.training))]
apply(pml_use, 2, function(x) length(which(is.na(x))))
</code></pre>
<pre><code>## user_name raw_timestamp_part_1 raw_timestamp_part_2
## 0 0 0
## cvtd_timestamp new_window num_window
## 0 0 0
## roll_belt pitch_belt yaw_belt
## 0 0 0
## total_accel_belt gyros_belt_x gyros_belt_y
## 0 0 0
## gyros_belt_z accel_belt_x accel_belt_y
## 0 0 0
## accel_belt_z magnet_belt_x magnet_belt_y
## 0 0 0
## magnet_belt_z roll_arm pitch_arm
## 0 0 0
## yaw_arm total_accel_arm gyros_arm_x
## 0 0 0
## gyros_arm_y gyros_arm_z accel_arm_x
## 0 0 0
## accel_arm_y accel_arm_z magnet_arm_x
## 0 0 0
## magnet_arm_y magnet_arm_z roll_dumbbell
## 0 0 0
## pitch_dumbbell yaw_dumbbell total_accel_dumbbell
## 0 0 0
## gyros_dumbbell_x gyros_dumbbell_y gyros_dumbbell_z
## 0 0 0
## accel_dumbbell_x accel_dumbbell_y accel_dumbbell_z
## 0 0 0
## magnet_dumbbell_x magnet_dumbbell_y magnet_dumbbell_z
## 0 0 0
## roll_forearm pitch_forearm yaw_forearm
## 0 0 0
## total_accel_forearm gyros_forearm_x gyros_forearm_y
## 0 0 0
## gyros_forearm_z accel_forearm_x accel_forearm_y
## 0 0 0
## accel_forearm_z magnet_forearm_x magnet_forearm_y
## 0 0 0
## magnet_forearm_z classe
## 0 0
</code></pre>
<pre><code class="r">summary(pml_use$new_window)
</code></pre>
<pre><code>## no yes
## 19216 406
</code></pre>
<p>One question is how distribution of the columns differ for new_window=yes as against new_window=no values - this is to be confident that there is nothing specific about these rows in that they will need to be excluded from the analysis or some special treatment is required. We plot a few of these and see that there is not much difference between them visually. </p>
<pre><code class="r">transparentTheme (trans = .9)
featurePlot(x = pml_use[, 8:59],
y = pml_use$new_window,
plot = "density",
## Pass in options to xyplot() to
## make it prettier
scales = list(x = list(relation="free"),
y = list(relation="free")),
adjust = 1.5,
pch = "|",
layout = c(9, 6),
auto.key = list(columns = 52))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-4"/> </p>
<p>To start our modelling, we must split the data into testing and training sets - strictly speaking the testing dataset is an out-of-sample set as it does not have the response variable in it.</p>
<pre><code class="r">set.seed(12345)
inTrain<-createDataPartition(y=pml_use$classe,p=0.7,list=FALSE)
training<-pml_use[inTrain,]
testing<-pml_use[-inTrain,]
### List all columns into one single variable
fmla<-as.formula(paste("classe ~",paste(names(pml_use[8:59]),collapse=" + ")))
</code></pre>
<p>We start with a RPART model and see the performance. </p>
<pre><code class="r">modFit<-train(fmla, method="rpart",data=training)
</code></pre>
<pre><code class="r">fancyRpartPlot(modFit$finalModel)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-8"/> </p>
<p>And see the model fit statistics both for in-sample and out of sample errors.</p>
<p><strong>IN-SAMPLE ERRORS</strong></p>
<pre><code class="r">confusionMatrix(training$classe,predict(modFit))
</code></pre>
<pre><code>## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 3564 51 280 0 11
## B 1090 918 650 0 0
## C 1115 70 1211 0 0
## D 1004 402 846 0 0
## E 357 325 665 0 1178
##
## Overall Statistics
##
## Accuracy : 0.5
## 95% CI : (0.492, 0.509)
## No Information Rate : 0.519
## P-Value [Acc > NIR] : 1
##
## Kappa : 0.347
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.500 0.5198 0.3316 NA 0.9907
## Specificity 0.948 0.8546 0.8825 0.836 0.8927
## Pos Pred Value 0.912 0.3454 0.5054 NA 0.4665
## Neg Pred Value 0.637 0.9235 0.7848 NA 0.9990
## Prevalence 0.519 0.1286 0.2659 0.000 0.0866
## Detection Rate 0.259 0.0668 0.0882 0.000 0.0858
## Detection Prevalence 0.284 0.1935 0.1744 0.164 0.1838
## Balanced Accuracy 0.724 0.6872 0.6070 NA 0.9417
</code></pre>
<p><strong>OUT OF SAMPLE ERRORS</strong></p>
<pre><code class="r">confusionMatrix(testing$classe,predict(modFit,newdata=testing))
</code></pre>
<pre><code>## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1528 21 123 0 2
## B 473 389 277 0 0
## C 480 31 515 0 0
## D 415 151 398 0 0
## E 148 161 292 0 481
##
## Overall Statistics
##
## Accuracy : 0.495
## 95% CI : (0.482, 0.508)
## No Information Rate : 0.517
## P-Value [Acc > NIR] : 1
##
## Kappa : 0.34
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.502 0.5166 0.3209 NA 0.9959
## Specificity 0.949 0.8539 0.8806 0.836 0.8887
## Pos Pred Value 0.913 0.3415 0.5019 NA 0.4445
## Neg Pred Value 0.640 0.9233 0.7757 NA 0.9996
## Prevalence 0.517 0.1280 0.2727 0.000 0.0821
## Detection Rate 0.260 0.0661 0.0875 0.000 0.0817
## Detection Prevalence 0.284 0.1935 0.1743 0.164 0.1839
## Balanced Accuracy 0.725 0.6852 0.6007 NA 0.9423
</code></pre>
<p>These two results show a match of only 60% approximately - clearly it is not good enough. We attempt a Random Forest result for the same and note the variable importance in a plot.</p>
<p>For simplicity we assign the randomForest object in the train model into a separate model. This will be useful as we will be using randomForest package functions for variable importance plots and cross-validation.</p>
<pre><code class="r">modFit_rf<-train(fmla, method="rf",data=training)
rf<-modFit_rf$finalModel
</code></pre>
<p>And visualize the node importance in the following plot</p>
<pre><code class="r">varImpPlot(rf,type=2,main="mean decrease in node impurity")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-13"/> </p>
<p>And the confusion matrices are analyzed</p>
<p><strong>IN-SAMPLE ERRORS</strong></p>
<pre><code class="r">confusionMatrix(training$classe,predict(modFit_rf))
</code></pre>
<pre><code>## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 3906 0 0 0 0
## B 0 2658 0 0 0
## C 0 0 2396 0 0
## D 0 0 0 2252 0
## E 0 0 0 0 2525
##
## Overall Statistics
##
## Accuracy : 1
## 95% CI : (1, 1)
## No Information Rate : 0.284
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 1
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 1.000 1.000 1.000 1.000 1.000
## Specificity 1.000 1.000 1.000 1.000 1.000
## Pos Pred Value 1.000 1.000 1.000 1.000 1.000
## Neg Pred Value 1.000 1.000 1.000 1.000 1.000
## Prevalence 0.284 0.193 0.174 0.164 0.184
## Detection Rate 0.284 0.193 0.174 0.164 0.184
## Detection Prevalence 0.284 0.193 0.174 0.164 0.184
## Balanced Accuracy 1.000 1.000 1.000 1.000 1.000
</code></pre>
<p>The confusion matrix for the training dataset gives a result of 100% which creates some concerns if this data is overfitted.</p>
<p><strong>OUT OF SAMPLE ERRORS</strong></p>
<pre><code class="r">confusionMatrix(testing$classe,predict(modFit_rf,newdata=testing))
</code></pre>
<pre><code>## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1674 0 0 0 0
## B 2 1137 0 0 0
## C 0 5 1021 0 0
## D 0 0 10 954 0
## E 0 0 0 0 1082
##
## Overall Statistics
##
## Accuracy : 0.997
## 95% CI : (0.995, 0.998)
## No Information Rate : 0.285
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.996
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.999 0.996 0.990 1.000 1.000
## Specificity 1.000 1.000 0.999 0.998 1.000
## Pos Pred Value 1.000 0.998 0.995 0.990 1.000
## Neg Pred Value 1.000 0.999 0.998 1.000 1.000
## Prevalence 0.285 0.194 0.175 0.162 0.184
## Detection Rate 0.284 0.193 0.173 0.162 0.184
## Detection Prevalence 0.284 0.194 0.174 0.164 0.184
## Balanced Accuracy 0.999 0.998 0.995 0.999 1.000
</code></pre>
<p>However the confusion matrix for the testing dataset belies those fears and it is sufficient.</p>
<p>We then run a cross-validation and observer the out-of-sample errors for trees involving 1,3,6,13,26,52 variables.</p>
<pre><code class="r">cv_results<-rfcv(pml_use[,8:59],pml_use[,60])
cv_results$error.cv
</code></pre>
<pre><code>## 52 26 13 6 3 1
## 0.003618 0.004994 0.007135 0.038732 0.105035 0.592906
</code></pre>
<pre><code class="r">with(cv_results, plot(n.var, error.cv, log="x", type="o", lwd=2))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-18"/> </p>
<p>The errrors are very small and provide a good estimae of out-of-sample errors.</p>
<p>These results, all encouraging, allow us to choose the random forest as a model of choice for this problem.</p>
</body>
</html>