-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppo.py
296 lines (233 loc) · 11.6 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import torch.nn as nn
from torch.distributions import MultivariateNormal
from torch.distributions import Categorical
class RolloutBuffer:
def __init__(self):
self.actions = []
self.states = []
self.logprobs = []
self.rewards = []
self.is_terminals = []
def clear(self):
del self.actions[:]
del self.states[:]
del self.logprobs[:]
del self.rewards[:]
del self.is_terminals[:]
def remove_last(self):
self.actions.pop()
self.states.pop()
self.logprobs.pop()
self.rewards.pop()
self.is_terminals.pop()
def __len__(self):
return len(self.actions)
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, has_continuous_action_space, action_std_init, device):
super(ActorCritic, self).__init__()
self.has_continuous_action_space = has_continuous_action_space
self.device = device
if has_continuous_action_space:
self.action_dim = action_dim
self.action_var = torch.full((action_dim,), action_std_init * action_std_init).to(self.device)
# actor
if has_continuous_action_space:
self.actor = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, action_dim),
)
else:
self.actor = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, action_dim),
nn.Softmax(dim=-1)
)
# critic
self.critic = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, 1)
)
def set_action_std(self, new_action_std):
if self.has_continuous_action_space:
self.action_var = torch.full((self.action_dim,), new_action_std * new_action_std).to(self.device)
else:
print("--------------------------------------------------------------------------------------------")
print("WARNING : Calling ActorCritic::set_action_std() on discrete action space policy")
print("--------------------------------------------------------------------------------------------")
def forward(self):
raise NotImplementedError
def get_mean(self, state):
if self.has_continuous_action_space:
action_mean = self.actor(state)
return action_mean.detach()
def act(self, state):
if self.has_continuous_action_space:
action_mean = self.actor(state)
cov_mat = torch.diag(self.action_var).unsqueeze(dim=0)
dist = MultivariateNormal(action_mean, cov_mat)
else:
action_probs = self.actor(state)
dist = Categorical(action_probs)
action = dist.sample()
action_logprob = dist.log_prob(action)
return action.detach(), action_logprob.detach()
def evaluate(self, state, action):
if self.has_continuous_action_space:
action_mean = self.actor(state)
action_var = self.action_var.expand_as(action_mean)
cov_mat = torch.diag_embed(action_var).to(self.device)
dist = MultivariateNormal(action_mean, cov_mat)
# For Single Action Environments.
if self.action_dim == 1:
action = action.reshape(-1, self.action_dim)
else:
action_probs = self.actor(state)
dist = Categorical(action_probs)
action_logprobs = dist.log_prob(action)
dist_entropy = dist.entropy()
state_values = self.critic(state)
return action_logprobs, state_values, dist_entropy
class PPO:
def __init__(self, state_dim, action_dim, lr_actor, lr_critic, gamma, k_epochs, eps_clip,
has_continuous_action_space, action_std_init=0.6, device=torch.device("cpu"),
diverse_policies=list(), diverse_weight=0,
diverse_weight_alpha=0.99, diverse_increase=True):
self.has_continuous_action_space = has_continuous_action_space
if has_continuous_action_space:
self.action_std = action_std_init
self.gamma = gamma
self.eps_clip = eps_clip
self.k_epochs = k_epochs
self.buffer = RolloutBuffer()
self.device = device
self.policy = ActorCritic(state_dim, action_dim, has_continuous_action_space, action_std_init, device).to(device)
self.optimizer = torch.optim.Adam([
{'params': self.policy.actor.parameters(), 'lr': lr_actor},
{'params': self.policy.critic.parameters(), 'lr': lr_critic}
])
self.policy_old = ActorCritic(state_dim, action_dim, has_continuous_action_space, action_std_init, device).to(device)
self.policy_old.load_state_dict(self.policy.state_dict())
self.MseLoss = nn.MSELoss()
self.other_policies = list()
self.diverse_weight_limit = diverse_weight
self.diverse_weight_alpha = diverse_weight_alpha
self.diverse_weight = 0 if diverse_increase else diverse_weight
self.diverse_weight_update_function = self.increase_weight_function if diverse_increase else self.decrease_weight_function
for checkpoint_path in diverse_policies:
other_policy = ActorCritic(state_dim, action_dim, has_continuous_action_space, action_std_init, device).to(device)
other_policy.load_state_dict(torch.load(checkpoint_path, map_location=lambda storage, loc: storage))
self.other_policies.append(other_policy)
def increase_weight_function(self):
self.diverse_weight = self.diverse_weight_alpha * self.diverse_weight + self.diverse_weight_limit * (1 - self.diverse_weight_alpha)
def decrease_weight_function(self):
self.diverse_weight *= self.diverse_weight_alpha
def set_action_std(self, new_action_std):
if self.has_continuous_action_space:
self.action_std = new_action_std
self.policy.set_action_std(new_action_std)
self.policy_old.set_action_std(new_action_std)
else:
print("--------------------------------------------------------------------------------------------")
print("WARNING : Calling PPO::set_action_std() on discrete action space policy")
print("--------------------------------------------------------------------------------------------")
def decay_action_std(self, action_std_decay_rate, min_action_std):
print("--------------------------------------------------------------------------------------------")
if self.has_continuous_action_space:
self.action_std = self.action_std - action_std_decay_rate
self.action_std = round(self.action_std, 4)
if self.action_std <= min_action_std:
self.action_std = min_action_std
print("setting actor output action_std to min_action_std : ", self.action_std)
else:
print("setting actor output action_std to : ", self.action_std)
self.set_action_std(self.action_std)
else:
print("WARNING : Calling PPO::decay_action_std() on discrete action space policy")
print("--------------------------------------------------------------------------------------------")
def select_action(self, state):
with torch.no_grad():
state = torch.FloatTensor(state).to(self.device)
action, action_logprob = self.policy_old.act(state)
self.buffer.states.append(state)
self.buffer.actions.append(action)
self.buffer.logprobs.append(action_logprob)
if self.has_continuous_action_space:
return action.detach().cpu().numpy().flatten()
else:
return action.item()
def get_mean(self, state):
with torch.no_grad():
state = torch.FloatTensor(state).to(self.device)
action = self.policy_old.get_mean(state)
return action.detach().cpu().numpy().flatten()
def update(self):
if len(self.buffer) == 0:
return
# Monte Carlo estimate of returns
rewards = []
discounted_reward = 0
for reward, is_terminal in zip(reversed(self.buffer.rewards), reversed(self.buffer.is_terminals)):
if is_terminal:
discounted_reward = 0
discounted_reward = reward + (self.gamma * discounted_reward)
rewards.insert(0, discounted_reward)
# Normalizing the rewards
rewards = torch.tensor(rewards, dtype=torch.float32).to(self.device)
rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-7)
# convert list to tensor
old_states = torch.squeeze(torch.stack(self.buffer.states, dim=0)).detach().to(self.device)
old_actions = torch.squeeze(torch.stack(self.buffer.actions, dim=0)).detach().to(self.device)
old_logprobs = torch.squeeze(torch.stack(self.buffer.logprobs, dim=0)).detach().to(self.device)
# Optimize policy for K epochs
for _ in range(self.k_epochs):
# Evaluating old actions and values
logprobs, state_values, dist_entropy = self.policy.evaluate(old_states, old_actions)
# match state_values tensor dimensions with rewards tensor
state_values = torch.squeeze(state_values)
# Finding the ratio (pi_theta / pi_theta__old)
ratios = torch.exp(logprobs - old_logprobs.detach())
# Finding Surrogate Loss
advantages = rewards - state_values.detach()
surr1 = ratios * advantages
surr2 = torch.clamp(ratios, 1 - self.eps_clip, 1 + self.eps_clip) * advantages
# Adding diversity term compared to other policies
dipg_loss = torch.zeros_like(surr1)
for policy in self.other_policies:
# for each other policy, calculate the policy distance ratio and advantages
# We want to maximize the distance ratio and make advantage as much as possible
other_logprobs, other_state_values, _ = policy.evaluate(old_states, old_actions)
other_state_values = torch.squeeze(other_state_values)
ratios = torch.exp(torch.abs(logprobs - other_logprobs))
ratios = torch.max(ratios, 1 / ratios)
ratios = torch.max(ratios, 100)
other_advantages = rewards - other_state_values.detach()
dipg_loss += ratios / torch.abs(other_advantages)
# final loss of clipped objective PPO
if len(self.other_policies):
dipg_loss /= len(self.other_policies)
loss = -torch.min(surr1, surr2) + 0.5 * self.MseLoss(state_values, rewards) - 0.01 * dist_entropy + self.diverse_weight * dipg_loss
# take gradient step
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
# Copy new weights into old policy
self.policy_old.load_state_dict(self.policy.state_dict())
# clear buffer
self.buffer.clear()
# Update weight
self.diverse_weight_update_function()
def save(self, checkpoint_path):
torch.save(self.policy_old.state_dict(), checkpoint_path)
def load(self, checkpoint_path):
self.policy_old.load_state_dict(torch.load(checkpoint_path, map_location=lambda storage, loc: storage))
self.policy.load_state_dict(torch.load(checkpoint_path, map_location=lambda storage, loc: storage))