-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_training.py
81 lines (65 loc) · 2.78 KB
/
model_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.metrics import mean_squared_error
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.callbacks import EarlyStopping
import joblib
import gzip
# Suppress TensorFlow warnings and errors
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
# Directories
processed_data_dir = "processed_data"
scalers_encoders_dir = "scalers_encoders"
models_dir = "models"
# Ensure directory exists
os.makedirs(models_dir, exist_ok=True)
def format_commodity_name(commodity):
"""Format commodity name to be used in file paths."""
return commodity.replace("(", "_").replace(")", "_").replace(" ", "_").replace("/", "_")
def build_and_train_model(X_train, y_train, X_test, y_test):
# Reshape X_train to be 3D for LSTM
X_train = np.reshape(X_train.values, (X_train.shape[0], 1, X_train.shape[1]))
X_test = np.reshape(X_test.values, (X_test.shape[0], 1, X_test.shape[1]))
# Define model
model = Sequential([
LSTM(50, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2])),
Dense(1)
])
model.compile(optimizer='adam', loss='mse')
# Early stopping
early_stop = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
# Train model
history = model.fit(
X_train, y_train,
epochs=100,
batch_size=32,
validation_data=(X_test, y_test),
callbacks=[early_stop],
verbose=2,
shuffle=False
)
return model, history
# Extract commodities from filenames
commodities = set(file.replace("_X_train.csv", "") for file in os.listdir(processed_data_dir) if "_X_train.csv" in file)
print("Identified commodities: ", commodities)
for commodity in commodities:
formatted_commodity_name = format_commodity_name(commodity)
# Load data
X_train = pd.read_csv(os.path.join(processed_data_dir, f"{formatted_commodity_name}_X_train.csv"))
y_train = pd.read_csv(os.path.join(processed_data_dir, f"{formatted_commodity_name}_y_train.csv"))
X_test = pd.read_csv(os.path.join(processed_data_dir, f"{formatted_commodity_name}_X_test.csv"))
y_test = pd.read_csv(os.path.join(processed_data_dir, f"{formatted_commodity_name}_y_test.csv"))
print(f"\nShape of X_train for {commodity}: {X_train.shape}")
# Train model
model, history = build_and_train_model(X_train, y_train, X_test, y_test)
# Save model
model_filename = os.path.join(models_dir, f"{formatted_commodity_name}_model.h5")
model.save(model_filename)
# Evaluate model
predictions = model.predict(X_test)
rmse = np.sqrt(mean_squared_error(y_test, predictions))
print(f"{commodity} Test RMSE: {rmse:.3f}")