forked from tensorflow/tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
.bazelrc
191 lines (157 loc) · 7.25 KB
/
.bazelrc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Android configs. Bazel needs to have --cpu and --fat_apk_cpu both set to the
# target CPU to build transient dependencies correctly. See
# https://docs.bazel.build/versions/master/user-manual.html#flag--fat_apk_cpu
build:android --crosstool_top=//external:android/crosstool
build:android --host_crosstool_top=@bazel_tools//tools/cpp:toolchain
build:android_arm --config=android
build:android_arm --cpu=armeabi-v7a
build:android_arm --fat_apk_cpu=armeabi-v7a
build:android_arm64 --config=android
build:android_arm64 --cpu=arm64-v8a
build:android_arm64 --fat_apk_cpu=arm64-v8a
build:android_x86 --config=android
build:android_x86 --cpu=x86
build:android_x86 --fat_apk_cpu=x86
build:android_x86_64 --config=android
build:android_x86_64 --cpu=x86_64
build:android_x86_64 --fat_apk_cpu=x86_64
# Sets the default Apple platform to macOS.
build --apple_platform_type=macos
# iOS configs for each architecture and the fat binary builds.
build:ios --apple_platform_type=ios
build:ios --apple_bitcode=embedded --copt=-fembed-bitcode
build:ios_armv7 --config=ios
build:ios_armv7 --cpu=ios_armv7
build:ios_armv7 --cops -Wno-c++11-narrowing
build:ios_arm64 --config=ios
build:ios_arm64 --cpu=ios_arm64
build:ios_x86_64 --config=ios
build:ios_x86_64 --cpu=ios_x86_64
build:ios_fat --config=ios
build:ios_fat --ios_multi_cpus=armv7,arm64,x86_64
build:ios_fat --copt -Wno-c++11-narrowing
# Config to use a mostly-static build and disable modular op registration
# support (this will revert to loading TensorFlow with RTLD_GLOBAL in Python).
# By default, TensorFlow will build with a dependence on
# //tensorflow:libtensorflow_framework.so.
build:monolithic --define framework_shared_object=false
# For projects which use TensorFlow as part of a Bazel build process, putting
# nothing in a bazelrc will default to a monolithic build. The following line
# opts in to modular op registration support by default.
build --define framework_shared_object=true
# Flags for open source build, always set to be true.
build --define open_source_build=true
test --define open_source_build=true
# For workaround https://github.com/bazelbuild/bazel/issues/8772 with Bazel >= 0.29.1
build --java_toolchain=//third_party/toolchains/java:tf_java_toolchain
build --host_java_toolchain=//third_party/toolchains/java:tf_java_toolchain
# Please note that MKL on MacOS or windows is still not supported.
# If you would like to use a local MKL instead of downloading, please set the
# environment variable "TF_MKL_ROOT" every time before build.
build:mkl --define=build_with_mkl=true --define=enable_mkl=true
build:mkl --define=tensorflow_mkldnn_contraction_kernel=0
build:mkl -c opt
# This config option is used to enable MKL-DNN open source library only,
# without depending on MKL binary version.
build:mkl_open_source_only --define=build_with_mkl_dnn_only=true
build:mkl_open_source_only --define=build_with_mkl_dnn_v1_only=true
build:mkl_open_source_only --define=build_with_mkl=true --define=enable_mkl=true
build:mkl_open_source_only --define=tensorflow_mkldnn_contraction_kernel=0
build:download_clang --crosstool_top=@local_config_download_clang//:toolchain
build:download_clang --define=using_clang=true
build:download_clang --action_env TF_DOWNLOAD_CLANG=1
# Instruct clang to use LLD for linking.
# This only works with GPU builds currently, since Bazel sets -B/usr/bin in
# auto-generated CPU crosstool, forcing /usr/bin/ld.lld to be preferred over
# the downloaded one.
build:download_clang_use_lld --linkopt='-fuse-ld=lld'
# This config refers to building with CUDA available. It does not necessarily
# mean that we build CUDA op kernels.
build:using_cuda --define=using_cuda=true
build:using_cuda --action_env TF_NEED_CUDA=1
build:using_cuda --crosstool_top=@local_config_cuda//crosstool:toolchain
# This config refers to building CUDA op kernels with nvcc.
build:cuda --config=using_cuda
build:cuda --define=using_cuda_nvcc=true
# This config refers to building CUDA op kernels with clang.
build:cuda_clang --config=using_cuda
build:cuda_clang --define=using_cuda_clang=true
build:cuda_clang --define=using_clang=true
build:cuda_clang --action_env TF_CUDA_CLANG=1
build:tensorrt --action_env TF_NEED_TENSORRT=1
build:rocm --crosstool_top=@local_config_rocm//crosstool:toolchain
build:rocm --define=using_rocm=true --define=using_rocm_hipcc=true
build:rocm --action_env TF_NEED_ROCM=1
build:sycl --crosstool_top=@local_config_sycl//crosstool:toolchain
build:sycl --define=using_sycl=true
build:sycl --action_env TF_NEED_OPENCL_SYCL=1
build:sycl_nodouble --config=sycl
build:sycl_nodouble --cxxopt -DTENSORFLOW_SYCL_NO_DOUBLE
build:sycl_nodouble --config=sycl
build:sycl_asan --copt -fno-omit-frame-pointer --copt -fsanitize-coverage=3 --copt -DGPR_NO_DIRECT_SYSCALLS --linkopt -fPIC --linkopt -fsanitize=address
build:sycl_nodouble --config=sycl
build:sycl_trisycl --define=using_trisycl=true
# Options extracted from configure script
build:ngraph --define=with_ngraph_support=true
build:numa --define=with_numa_support=true
# Options to disable default on features
build:noaws --define=no_aws_support=true
build:nogcp --define=no_gcp_support=true
build:nohdfs --define=no_hdfs_support=true
build:nonccl --define=no_nccl_support=true
build --define=use_fast_cpp_protos=true
build --define=allow_oversize_protos=true
build --spawn_strategy=standalone
build --strategy=Genrule=standalone
build -c opt
# By default, build TF in C++ 14 mode.
build --cxxopt=-std=c++14
build --host_cxxopt=-std=c++14
# Make Bazel print out all options from rc files.
build --announce_rc
# Other build flags.
build --define=grpc_no_ares=true
# Modular TF build options
build:dynamic_kernels --define=dynamic_loaded_kernels=true
build:dynamic_kernels --copt=-DAUTOLOAD_DYNAMIC_KERNELS
# Build TF with C++ 17 features.
build:c++17 --cxxopt=-std=c++1z
build:c++17 --cxxopt=-stdlib=libc++
build:c++1z --config=c++17
# Default paths for TF_SYSTEM_LIBS
build --define=PREFIX=/usr
build --define=LIBDIR=$(PREFIX)/lib
build --define=INCLUDEDIR=$(PREFIX)/include
# Suppress all warning messages.
build:short_logs --output_filter=DONT_MATCH_ANYTHING
# Options when using remote execution
build:rbe --action_env=BAZEL_DO_NOT_DETECT_CPP_TOOLCHAIN=1
build:rbe --auth_enabled=true
build:rbe --auth_scope=https://www.googleapis.com/auth/cloud-source-tools
build:rbe --define=EXECUTOR=remote
build:rbe --flaky_test_attempts=3
build:rbe --jobs=200
build:rbe --remote_accept_cached=true
build:rbe --remote_cache=remotebuildexecution.googleapis.com
build:rbe --remote_executor=remotebuildexecution.googleapis.com
build:rbe --remote_local_fallback=false
build:rbe --remote_timeout=600
build:rbe --spawn_strategy=remote,worker,sandboxed,local
build:rbe --strategy=Genrule=remote,worker,sandboxed,local
build:rbe --strategy=Closure=remote,worker,sandboxed,local
build:rbe --strategy=Javac=remote,worker,sandboxed,local
build:rbe --strategy=TestRunner=remote,worker,sandboxed,local
build:rbe --tls_enabled
test:rbe --test_env=USER=anon
# Options to build TensorFlow 1.x or 2.x.
build:v1 --define=tf_api_version=1
build:v2 --define=tf_api_version=2
build:v1 --action_env=TF2_BEHAVIOR=0
build:v2 --action_env=TF2_BEHAVIOR=1
build --config=v2
test --config=v2
# Default options should come above this line
# Options from ./configure
try-import %workspace%/.tf_configure.bazelrc
# Put user-specific options in .bazelrc.user
try-import %workspace%/.bazelrc.user