-
Notifications
You must be signed in to change notification settings - Fork 1k
/
main.py
executable file
·106 lines (84 loc) · 4.37 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from UGATIT import UGATIT
import argparse
from utils import *
"""parsing and configuration"""
def parse_args():
desc = "Tensorflow implementation of U-GAT-IT"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--phase', type=str, default='train', help='[train / test]')
parser.add_argument('--light', type=str2bool, default=False, help='[U-GAT-IT full version / U-GAT-IT light version]')
parser.add_argument('--dataset', type=str, default='selfie2anime', help='dataset_name')
parser.add_argument('--epoch', type=int, default=100, help='The number of epochs to run')
parser.add_argument('--iteration', type=int, default=10000, help='The number of training iterations')
parser.add_argument('--batch_size', type=int, default=1, help='The size of batch size')
parser.add_argument('--print_freq', type=int, default=1000, help='The number of image_print_freq')
parser.add_argument('--save_freq', type=int, default=1000, help='The number of ckpt_save_freq')
parser.add_argument('--decay_flag', type=str2bool, default=True, help='The decay_flag')
parser.add_argument('--decay_epoch', type=int, default=50, help='decay epoch')
parser.add_argument('--lr', type=float, default=0.0001, help='The learning rate')
parser.add_argument('--GP_ld', type=int, default=10, help='The gradient penalty lambda')
parser.add_argument('--adv_weight', type=int, default=1, help='Weight about GAN')
parser.add_argument('--cycle_weight', type=int, default=10, help='Weight about Cycle')
parser.add_argument('--identity_weight', type=int, default=10, help='Weight about Identity')
parser.add_argument('--cam_weight', type=int, default=1000, help='Weight about CAM')
parser.add_argument('--gan_type', type=str, default='lsgan', help='[gan / lsgan / wgan-gp / wgan-lp / dragan / hinge]')
parser.add_argument('--smoothing', type=str2bool, default=True, help='AdaLIN smoothing effect')
parser.add_argument('--ch', type=int, default=64, help='base channel number per layer')
parser.add_argument('--n_res', type=int, default=4, help='The number of resblock')
parser.add_argument('--n_dis', type=int, default=6, help='The number of discriminator layer')
parser.add_argument('--n_critic', type=int, default=1, help='The number of critic')
parser.add_argument('--sn', type=str2bool, default=True, help='using spectral norm')
parser.add_argument('--img_size', type=int, default=256, help='The size of image')
parser.add_argument('--img_ch', type=int, default=3, help='The size of image channel')
parser.add_argument('--augment_flag', type=str2bool, default=True, help='Image augmentation use or not')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint',
help='Directory name to save the checkpoints')
parser.add_argument('--result_dir', type=str, default='results',
help='Directory name to save the generated images')
parser.add_argument('--log_dir', type=str, default='logs',
help='Directory name to save training logs')
parser.add_argument('--sample_dir', type=str, default='samples',
help='Directory name to save the samples on training')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
# --checkpoint_dir
check_folder(args.checkpoint_dir)
# --result_dir
check_folder(args.result_dir)
# --result_dir
check_folder(args.log_dir)
# --sample_dir
check_folder(args.sample_dir)
# --epoch
try:
assert args.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert args.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
# open session
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
gan = UGATIT(sess, args)
# build graph
gan.build_model()
# show network architecture
show_all_variables()
if args.phase == 'train' :
gan.train()
print(" [*] Training finished!")
if args.phase == 'test' :
gan.test()
print(" [*] Test finished!")
if __name__ == '__main__':
main()