LC-QuAD v1.0 and v2.0 are large-scale QA datasets towards complex questions against knowledge graphs.
The Largescale Complex Question Answering Dataset 1.0 (LC-QuAD 1.0)[1] is a Question Answering dataset with 5000 pairs of question and its corresponding SPARQL query. The target knowledge base is DBpedia, specifically, the April, 2016 version. Please see the original paper for details about the dataset creation process and framework.
This dataset can be downloaded via the link.
Model / System | Year | Precision | Recall | F1 | Accuracy | Language | Reported by |
---|---|---|---|---|---|---|---|
T5-Base | 2022 | - | - | 91 | - | EN | Banerjee et al |
T5-Small | 2022 | - | - | 90 | - | EN | Banerjee et al |
PGN-BERT-BERT | 2022 | - | - | 88 | - | EN | Banerjee et al |
QA Sparql | 2023 | 88 | 56 | 68 | - | EN | Kosten et al. |
mBERT | 2021 | 73 | - | 85.50 | - | EN | Zhou Y. et al |
SubQG | 2019 | - | - | 85 | - | EN | Banerjee et al |
BART | 2022 | - | - | 84 | - | EN | Banerjee et al |
Stage-I No Noise | 2022 | 83.11 | 83.04 | 83.08 | - | EN | Purkayastha et al. |
mBERT | 2021 | - | - | 82.40 | - | DE | Zhou Y. et al |
LAMA | 2019 | - | - | 81.60 | - | EN | Radoev et. al. |
mBERT | 2021 | - | - | 80.90 | - | NL | Zhou Y. et al |
CompQA | 2018 | - | - | 77 | - | EN | Banerjee et al |
mBERT | 2021 | - | - | 76.10 | - | ES | Zhou Y. et al |
HGNet | 2021 | 75.82 | 75.22 | 75.10 | - | EN | Chen et al. |
AQG-net | 2021 | 76 | 75 | 76 | - | EN | Liu et al. |
SQG | 2018 | - | - | 75 | - | EN | Banerjee et al |
O-Ranking | 2021 | 75.54 | 74.95 | 74.81 | - | EN | Chen et al. |
AQG-net | 2021 | - | - | 74.80 | - | EN | Chen et al. |
mBERT | 2021 | - | - | 74.50 | - | RU | Zhou Y. et al |
mBERT | 2021 | - | - | 74 | - | PT | Zhou Y. et al |
mBERT | 2021 | - | - | 73.20 | - | FR | Zhou Y. et al |
mBERT | 2021 | - | - | 72.60 | - | RO | Zhou Y. et al |
mBERT | 2021 | - | - | 72.30 | - | IT | Zhou Y. et al |
DAM | 2021 | - | - | 72 | - | EN | Chen et al. |
GSM | 2021 | 71 | 73 | 72 | - | EN | Liu et al. |
mBERT | 2021 | - | - | 71.90 | - | HI_IN | Zhou Y. et al |
mBERT | 2021 | - | - | 71.70 | - | FA | Zhou Y. et al |
GGNN | 2022 | 66 | 78 | 71 | - | EN | Liu et al. |
DAM | 2022 | 65 | 77 | 71 | - | EN | Liu et al. |
Slot-Matching | 2021 | - | - | 71 | - | EN | Chen et al. |
G Maheshwari et. al. Pairwise | 2019 | 66 | 77 | 71 | - | EN | G Maheshwari et. al. |
G Maheshwari et. al. Pointwise | 2019 | 65 | 76 | 70 | - | EN | G Maheshwari et. al. |
HR-BiLSTM | 2021 | - | - | 70 | - | EN | Chen et al. |
S-Ranking | 2021 | 65.89 | 75.30 | 69.53 | - | EN | Chen et al. |
STAGG | 2021 | - | - | 69 | - | EN | Chen et al. |
Liang et al. | 2021 | 88 | 56 | 68 | - | EN | Liang et al. |
ValueNet4SPARQL | 2023 | 86 | 84 | 85 | - | EN | Kosten et al. |
PGN-BERT | 2018 | - | - | 67 | - | EN | Banerjee et al |
STaG-QA_pre | 2021 | 74.50 | 54.80 | 53.60 | - | EN | Ravishankar et al. |
STaG-QA | 2021 | 76.50 | 52.80 | 51.40 | - | EN | Ravishankar et al. |
sparql-qa | 2021 | 49.50 | 49.20 | 49.10 | - | EN | M. Borroto et al |
BART | 2021 | 48.01 | 49.19 | 47.62 | - | EN | Chen et al. |
NLIWOD | 2018 | - | - | 48 | - | EN | Banerjee et al |
SYGMA | 2021 | 47 | 48 | 47 | - | EN | S Neelam et al |
NHGG | 2021 | 46.93 | 48.36 | 46.12 | - | EN | Chen et al. |
WDAqua-core1 | 2021 | 59 | 38 | 46 | - | EN | Liang et al. |
NSQA | 2021 | 44.80 | 45.80 | 44.40 | - | EN | Ravishankar et al. |
NSQA | 2023 | 45 | 46 | 45 | - | EN | Kosten et al. |
Stage-I Part Noise | 2022 | 42.40 | 42.26 | 42.33 | - | EN | Purkayastha et al. |
Stage-II w/ type | 2022 | 37.03 | 37.06 | 37.05 | - | EN | Purkayastha et al. |
QASparql | 2021 | - | - | 34 | - | EN | Orogat et al. |
DTQA | 2021 | 33.94 | 34.99 | 33.72 | - | EN | Abdelaziz et al. |
QAmp | 2021 | 25 | 50 | 33.33 | - | EN | Purkayastha et al. |
QAmp | 2021 | 25 | 50 | 33 | - | EN | Steinmetz et al. |
QAmp | 2021 | 25 | 50 | 33 | - | EN | Abdelaziz et al. |
QAmp | 2021 | 25 | 50 | 33 | - | EN | Ravishankar et al. |
QAmp | 2021 | 25 | 50 | 33 | - | EN | Kapanipathi et al. |
Stage-II w/o type | 2022 | 32.17 | 32.20 | 32.18 | - | EN | Purkayastha et al. |
SINA | 2015 | - | - | 24 | - | EN | Banerjee et al |
WDAqua-core1 | 2021 | 22 | 38 | 28 | - | EN | Abdelaziz et al. |
WDAqua-core1 | 2021 | 22 | 38 | 28 | - | EN | Purkayastha et al. |
WDAqua-core1 | 2021 | 22 | 38 | 28 | - | EN | Steinmetz et al. |
WDAqua-core0 | 2021 | 22 | 38 | 28 | - | EN | Ravishankar et al. |
Stage-I Full Noise | 2022 | 25.54 | 25.64 | 25.59 | - | EN | Purkayastha et al. |
Frankenstein | 2021 | 20 | 21 | 20 | - | EN | Liang et al. |
WDAqua-core0 | 2021 | - | - | 15 | - | EN | Orogat et al. |
AskNow | 2021 | - | - | 11 | - | EN | Orogat et al. |
Qanary(TM+DP+QB) | 2021 | - | - | 1 | - | EN | Orogat et al. |
Entity Type Tags Modified | 2022 | - | - | - | 72 | EN | Lin and Lu |
SPARQL Generator | 2022 | - | - | - | 71.27 | EN | Lin and Lu |
Diomedi and Hogan | 2022 | - | - | - | 14 | EN | Lin and Lu |
Yin et al. | 2022 | - | - | - | 8 | EN | Lin and Lu |
KGQAn | 2023 | 58.07 | 47.12 | 52.03 | - | EN | Omar et al. |
The Largescale Complex Question Answering Dataset 2.0 (LC-QuAD 2.0)[2] is a Large Question Answering dataset with 30,000 pairs of question and its corresponding SPARQL query. The target knowledge base is Wikidata and DBpedia, specifically the 2018 version. Please see our paper for details about the dataset creation process and framework.
This dataset can be downloaded via the link.
Model / System | Year | Precision | Recall | F1 | Language | Reported by |
---|---|---|---|---|---|---|
T5-Small | 2022 | - | - | 92 | EN | Banerjee et al. |
T5-Base | 2022 | - | - | 91 | EN | Banerjee et al. |
PGN-BERT-BERT | 2022 | - | - | 86 | EN | Banerjee et al. |
SGPT_Q,K [1] | 2022 | - | - | 89.04 | EN | Al Hasan Rony et al. |
PGN-BERT | 2022 | - | - | 77 | EN | Banerjee et al. |
NSpM [2] | 2022 | - | - | 66.47 | EN | Al Hasan Rony et al. |
BART | 2022 | - | - | 64 | EN | Banerjee et al. |
Zou et al. + Bert | 2021 | - | - | 59.30 | EN | Zou et al. |
CLC | 2021 | - | - | 59 | EN | Banerjee et al. |
Multi-hop QGG | 2020 | - | - | 53 | EN | Banerjee et al. |
Zou et al. + Tencent Word | 2021 | - | - | 52.90 | EN | Zou et al. |
Multi-hop QGG | 2021 | - | - | 52.60 | EN | Zou et al. |
AQG-net | 2021 | - | - | 44.90 | EN | Zou et al. |
- [1][2] Token wise match of query string is performed. Answers are not fetched from KG.
Model / System | Year | Precision | Recall | F1 | Language | Reported by |
---|---|---|---|---|---|---|
SGPT_Q [3] | 2022 | - | - | 83.45 | EN | Al Hasan Rony et al. |
ChatGPT | 2023 | - | - | 42.76 | EN | Tan et al. |
GPT-3.5v3 | 2023 | - | - | 39.04 | EN | Tan et al. |
GPT-3.5v2 | 2023 | - | - | 33.77 | EN | Tan et al. |
GPT-3 | 2023 | - | - | 33.04 | EN | Tan et al. |
FLAN-T5 | 2023 | - | - | 30.14 | EN | Tan et al. |
UNIQORN | 2021 | 33.1 | - | - | EN | Pramanik et al. |
QAnswer | 2020 | 30.80 | - | - | EN | Pramanik et al. |
GraftNet | 2018 | 19.7 | - | - | EN | Christmann P. et al |
ElNeuQA-ConvS2S [1] | 2021 | 26.90 | 27 | 26.90 | EN | Diomedi, Hogan |
GRAFT-Net + Clocq [2] | 2022 | 19.70 | - | - | EN | Christmann P. et al |
Platypus | 2018 | 3.6 | - | - | EN | Pramanik et al. |
Pullnet | 2019 | 1.1 | - | - | EN | Pramanik et al. |
UNIK-QA | 2020 | 0.5 | - | - | EN | Pramanik et al. |
GETT-QA [4] | 2023 | 40.3 | - | - | EN | Banerjee et al. |
- [1] discarded 2,502 (8.2%) of the 30,226 instances due to such quality issues..
- [2] 2k dev, 8k test, more complex questions from origical LC-QuAD 2.0.
- [3] Token wise match of query string is performed. Answers are not fetched from KG.
- [4] With truncated KG embeddings.
Model / System | Year | Precision | Recall | F1 | Language | Reported by |
---|---|---|---|---|---|---|
mBERT [1] | 2021 | - | - | 70 | PT_BR | Zhou Y. et al |
mBERT [2] | 2021 | - | - | 66.7 | EN | Zhou Y. et. al. |
mBERT [3] | 2021 | - | - | 65.9 | NL | Zhou Y. et al |
mBERT [4] | 2021 | - | - | 63.6 | FR | Zhou Y. et al |
mBERT [5] | 2021 | - | - | 63.5 | RU | Zhou Y. et al |
mBERT [6] | 2021 | - | - | 63.5 | PT | Zhou Y. et al |
mBERT [7] | 2021 | - | - | 62.6 | HI_IN | Zhou Y. et al |
mBERT [8] | 2021 | - | - | 62.2 | DE | Zhou Y. et al |
mBERT [9] | 2021 | - | - | 62.1 | RO | Zhou Y. et al |
mBERT [10] | 2021 | - | - | 60 | FA | Zhou Y. et al |
mBERT [11] | 2021 | - | - | 58.8 | ES | Zhou Y. et al |
mBERT [12] | 2021 | - | - | 57.7 | IT | Zhou Y. et al |
- [1] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [2] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [3] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [4] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [5] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [6] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [7] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [8] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [9] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [10] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [11] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
- [12] trained on LC-QuAD 1.0, tested on a data combining qald4 -9 and filter out some out-of-scope questionss.
[1] Trivedi, Priyansh, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann. Lc-quad: A corpus for complex question answering over knowledge graphs. In International Semantic Web Conference, pp. 210-218. Springer, Cham, 2017.
[2] Dubey, Mohnish, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens Lehmann. Lc-quad 2.0: A large dataset for complex question answering over wikidata and dbpedia. In International semantic web conference, pp. 69-78. Springer, Cham, 2019.