-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmsnet.py
146 lines (110 loc) · 5.5 KB
/
msnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import resnet50
class DecoderBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(DecoderBlock, self).__init__()
self.decode = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.PixelShuffle(upscale_factor=2))
def forward(self, x):
return self.decode(x)
def up_and_add(x, y):
return F.interpolate(x, size=(y.size(2), y.size(3)), mode='bilinear', align_corners=True) + y
class FPN_fuse(nn.Module):
def __init__(self, feature_channels=[32, 64, 128, 256], fpn_out=32):
super(FPN_fuse, self).__init__()
assert feature_channels[0] == fpn_out
self.conv1x1 = nn.ModuleList([nn.Conv2d(ft_size, fpn_out, kernel_size=1) for ft_size in feature_channels[1:]])
self.smooth_conv = nn.ModuleList([nn.Conv2d(fpn_out, fpn_out, kernel_size=3, padding=1)] * (len(feature_channels) - 1))
self.conv_fusion = nn.Sequential(nn.Conv2d(len(feature_channels) * fpn_out, fpn_out, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(fpn_out),
nn.ReLU(inplace=True))
def forward(self, features):
features[1:] = [conv1x1(feature) for feature, conv1x1 in zip(features[1:], self.conv1x1)]
P = [up_and_add(features[i], features[i - 1]) for i in reversed(range(1, len(features)))]
P = [smooth_conv(x) for smooth_conv, x in zip(self.smooth_conv, P)]
P = list(reversed(P))
P.append(features[-1])
H, W = P[0].size(2), P[0].size(3)
P[1:] = [F.interpolate(feature, size=(H, W), mode='bilinear', align_corners=True) for feature in P[1:]]
x = self.conv_fusion(torch.cat((P), dim=1))
return x
class rgb_net(nn.Module):
def __init__(self, num_classes, filters=32):
super().__init__()
self.rgb = resnet50(pretrained=True)
# decoder
self.dec5 = DecoderBlock(2048, filters * 16)
self.dec4 = DecoderBlock(2048 + filters * 4, filters * 16)
self.dec3 = DecoderBlock(1024 + filters * 4, filters * 8)
self.dec2 = DecoderBlock(512 + filters * 2, filters * 4)
self.dec1 = DecoderBlock(256 + filters * 1, filters * 2)
def forward(self, rgb):
rgb0 = self.rgb.conv1(rgb)
rgb0 = self.rgb.bn1(rgb0)
rgb0 = self.rgb.relu(rgb0)
rgb0 = self.rgb.maxpool(rgb0)
rgb1 = self.rgb.layer1(rgb0)
rgb2 = self.rgb.layer2(rgb1)
rgb3 = self.rgb.layer3(rgb2)
rgb4 = self.rgb.layer4(rgb3)
dec5 = self.dec5(nn.functional.max_pool2d(rgb4, kernel_size=2, stride=2))
dec4 = self.dec4(torch.cat((rgb4, dec5), dim=1))
dec3 = self.dec3(torch.cat((rgb3, dec4), dim=1))
dec2 = self.dec2(torch.cat((rgb2, dec3), dim=1))
dec1 = self.dec1(torch.cat((rgb1, dec2), dim=1))
return dec1, dec2, dec3, dec4
class nnn_net(nn.Module):
def __init__(self, num_classes, filters=32):
super().__init__()
self.nnn = resnet50(pretrained=True)
# self.nnn.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
# self.nnn.conv1.weight.data = torch.unsqueeze(torch.mean(self.nnn.conv1.weight.data, dim=1), dim=1)
# decoder
self.dec5 = DecoderBlock(2048, filters * 16)
self.dec4 = DecoderBlock(2048 + filters * 4, filters * 16)
self.dec3 = DecoderBlock(1024 + filters * 4, filters * 8)
self.dec2 = DecoderBlock(512 + filters * 2, filters * 4)
self.dec1 = DecoderBlock(256 + filters * 1, filters * 2)
def forward(self, nnn):
nnn0 = self.nnn.conv1(nnn)
nnn0 = self.nnn.bn1(nnn0)
nnn0 = self.nnn.relu(nnn0)
nnn0 = self.nnn.maxpool(nnn0)
nnn1 = self.nnn.layer1(nnn0)
nnn2 = self.nnn.layer2(nnn1)
nnn3 = self.nnn.layer3(nnn2)
nnn4 = self.nnn.layer4(nnn3)
dec5 = self.dec5(nn.functional.max_pool2d(nnn4, kernel_size=2, stride=2))
dec4 = self.dec4(torch.cat((nnn4, dec5), dim=1))
dec3 = self.dec3(torch.cat((nnn3, dec4), dim=1))
dec2 = self.dec2(torch.cat((nnn2, dec3), dim=1))
dec1 = self.dec1(torch.cat((nnn1, dec2), dim=1))
return dec1, dec2, dec3, dec4
class MSNet(nn.Module):
def __init__(self, num_classes):
super(MSNet, self).__init__()
self.rgb = rgb_net(num_classes)
self.nnn = nnn_net(num_classes)
self.FPN = FPN_fuse([32, 64, 128, 256], 32)
self.fuse = nn.Conv2d(32, num_classes, kernel_size=3, padding=1)
def forward(self, rgbnnd):
input_size = (rgbnnd.size()[2], rgbnnd.size()[3])
rgb = rgbnnd[:, :3]
nnn = rgbnnd[:, 3:]
rgb_dec1, rgb_dec2, rgb_dec3, rgb_dec4 = self.rgb(rgb)
nnn_dec1, nnn_dec2, nnn_dec3, nnn_dec4 = self.nnn(nnn)
dec1 = torch.cat((rgb_dec1, nnn_dec1), dim=1)
dec2 = torch.cat((rgb_dec2, nnn_dec2), dim=1)
dec3 = torch.cat((rgb_dec3, nnn_dec3), dim=1)
dec4 = torch.cat((rgb_dec4, nnn_dec4), dim=1)
features = [dec1, dec2, dec3, dec4]
fpn = self.FPN(features)
# x = self.fuse(fpn)
# x = F.interpolate(x, size=input_size, mode='bilinear', align_corners=True)
x = F.interpolate(fpn, size=input_size, mode='bicubic', align_corners=True)
x = self.fuse(x)
return x