forked from bahaaEldeen1999/Read-That-Note
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification.py
344 lines (299 loc) · 11.4 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from matplotlib.pyplot import show
from commonfunctions import *
from preprocessing import *
from output_handler import *
import skimage as sk
import numpy as np
import matplotlib as mp
import scipy as sp
from heapq import *
import cv2
import joblib
import os.path
from operator import itemgetter
'''
get note head charachter basedon its position
'''
def getFlatHeadNotePos(staff_lines, note, staff_space, charPos, staff_height, img_o, isBeamOrChord):
# if charPos[3]-charPos[2] < staff_space:
# return [-1]
img = np.copy(note)
# show_images([img])
s_c = np.copy(staff_lines)
n_c = np.copy(note)
s_c = s_c > 0
n_c = n_c > 0
s_c[charPos[0]:charPos[1], charPos[2]:charPos[3]
] = s_c[charPos[0]:charPos[1], charPos[2]:charPos[3]] | n_c
err = staff_space//8
# edges = np.copy(note)
# edges = edges.astype(int)*255
# show_images([edges])
# se = sk.morphology.disk(staff_space//16)
# img = sk.morphology.binary_closing(img, se)
# img = sp.ndimage.morphology.binary_fill_holes(img)
# show_images([img])
# img = sk.morphology.binary_closing(img)
# img = sk.morphology.binary_dilation(img)
se = sk.morphology.disk(staff_space//2-2)
# se[staff_space//4:3*staff_space//4+1,
# staff_space//4:3*staff_space//4+1] = 0
img = sk.morphology.binary_opening(img, se)
# show_images([img])
# se = sk.morphology.disk((staff_space//3))
se = sk.morphology.disk(staff_space//4)
img = sk.morphology.binary_erosion(img)
# show_images([img])
img = sk.morphology.binary_closing(img)
se = sk.morphology.disk(staff_space//2-3)
img = sk.morphology.binary_erosion(img, se)
img = sk.morphology.binary_erosion(img)
se = sk.morphology.disk(staff_space//8+1)
img = sk.morphology.binary_dilation(img, se)
img = sk.morphology.binary_erosion(img)
bounding_boxes = sk.measure.find_contours(img, 0.8)
output = []
#print("no of notes")
# print(len(bounding_boxes))
# show_images([img])
cols = []
for box in bounding_boxes:
try:
[Xmin, Xmax, Ymin, Ymax] = [np.min(box[:, 1]), np.max(
box[:, 1]), np.min(box[:, 0]), np.max(box[:, 0])]
ar = (Xmax-Xmin)/(Ymax-Ymin)
if True:
r0 = int(Ymin)
r1 = int(Ymax)
r0 = max(r0, 0)
r1 = min(r1, staff_lines.shape[0])
col = int(Xmin)
center = (r0+r1)//2
center2 = staff_lines.shape[1]//2
# print("center "+str(center))
# x = np.copy(note)
# x[center-staff_space//2:center+staff_space//2, :] = False
# print(staff_lines[center-staff_height:center+staff_height, :])
# show_images(
# [note, x, staff_lines[center-staff_space//2:center+staff_space//2, :]])
# show_images(
# [s_c[center-staff_space//2:center+staff_space//2, :]])
horz_hist = np.sum(
staff_lines[center-staff_height:center+staff_height, :], axis=1)
# print(horz_hist)
maximum = np.sum(horz_hist)
up_arr = runs_of_ones_array(
staff_lines[0:center-staff_height//2, center2])
up = 0
t = staff_height//2
for x in up_arr:
if x >= t:
up += 1
# print(maximum)
cols.append(col)
if maximum < staff_lines.shape[1]:
# print("space")
if up == 0:
x = 0
i = center
while i < staff_lines.shape[0] and staff_lines[i, center2] == False:
x += 1
i += 1
if x < staff_space:
output.append("g2")
elif x < 1.5*staff_space:
output.append("a2")
else:
output.append("b2")
elif up == 1:
output.append("e2")
elif up == 2:
output.append("c2")
elif up == 3:
output.append("a1")
elif up == 4:
output.append("f1")
else:
x = 0
i = center
while i >= 0 and staff_lines[i, center2] == False:
x += 1
i -= 1
if abs(x) < staff_space:
output.append("d1")
else:
output.append("c1")
else:
# print("line")
if up == 5:
x = 0
i = center
while i >= 0 and staff_lines[i, center2] == False:
x += 1
i -= 1
if abs(x) < staff_space:
output.append("d1")
else:
output.append("c1")
elif up == 1:
output.append("d2")
elif up == 2:
output.append("b1")
elif up == 3:
output.append("g1")
elif up == 4:
output.append("e1")
elif up == 0:
x = 0
i = center
while i < staff_lines.shape[0] and staff_lines[i, center2] == False:
x += 1
i += 1
# print("X "+str(x))
if x < staff_space:
output.append("f2")
elif x < 1.5*staff_space:
output.append("a2")
else:
output.append("b2")
if isBeamOrChord == 0:
output = sorted(output)
else:
newArr = []
for i in range(len(cols)):
newArr.append([cols[i], output[i]])
newArr = sorted(newArr, key=itemgetter(0))
output = []
for i in range(len(cols)):
output.append(newArr[i][1])
except:
pass
output.insert(0, charPos[2])
return output
'''
check if the note entered in chord or beam
'''
def check_chord_or_beam(img_input, staff_space):
'''
**img is assumed to be binarized
returns:
0 --> chord
1 --> beam /16
2 --> beam /32
-1 --> neither
'''
se = sk.morphology.disk(staff_space//2-1)
# img = sk.morphology.binary_opening(img_input, se)
# img = sk.morphology.binary_erosion(img, se)
# img = sk.morphology.binary_erosion(img)
# se = sk.morphology.disk(staff_space//4)
# img = sk.morphology.binary_dilation(img, se)
img = sk.morphology.binary_opening(img_input, se)
# show_images([img])
# se = sk.morphology.disk((staff_space//3))
se = sk.morphology.disk(staff_space//4)
img = sk.morphology.binary_erosion(img)
img = sk.morphology.binary_dilation(img)
se = sk.morphology.disk(staff_space//2-1)
img = sk.morphology.binary_erosion(img, se)
# img = sk.morphology.binary_erosion(img)
se = sk.morphology.disk(staff_space//8+1)
img = sk.morphology.binary_dilation(img, se)
img = sk.morphology.binary_erosion(img)
# show_images([img])
bounding_boxes = sk.measure.find_contours(img, 0.8)
if len(bounding_boxes) < 2:
return -1
newImg = img.copy()
centers, count_disks_spacing = [], 0
for box in bounding_boxes:
[Xmin, Xmax, Ymin, Ymax] = [np.min(box[:, 1]), np.max(
box[:, 1]), np.min(box[:, 0]), np.max(box[:, 0])]
centers.append([Ymin+Ymin//2, Xmin+Xmin//2])
for i in range(1, len(centers)):
if abs(centers[i][1] - centers[i-1][1]) > 2*staff_space:
count_disks_spacing += 1
if count_disks_spacing != len(centers)-1:
return 0
img = sk.morphology.thin(sk.img_as_bool(img_input))
h, theta, d = sk.transform.hough_line(img)
h, theta, d = sk.transform.hough_line_peaks(h, theta, d)
angels = np.rad2deg(theta)
number_of_lines = np.sum(np.abs(angels) > 10)
if number_of_lines < 1 or number_of_lines > 2:
return -1
else:
return number_of_lines
'''
predict the note given
'''
def classfiyimg(img, staff_space):
out = check_chord_or_beam(img, staff_space)
if(out == -1):
features = extract_features(img)
print(loaded_model.predict([features]))
'''
extract features for the hog classifier
'''
def extract_features(img):
img = img.astype(int)
# show_images([img])
target_img_size = (78, 78)
img = cv2.resize(img.astype('uint8'), target_img_size)
win_size = (64, 64)
cell_size = (8, 8)
block_size_in_cells = (2, 2)
block_size = (block_size_in_cells[1] * cell_size[1],
block_size_in_cells[0] * cell_size[0])
block_stride = (cell_size[1], cell_size[0])
nbins = 15 # Number of orientation bins
hog = cv2.HOGDescriptor(win_size, block_size,
block_stride, cell_size, nbins)
h = hog.compute(img)
h = h.flatten()
return h.flatten()
'''
load dataset to be trainedon/tested
'''
def load_dataset():
path_to_dataset = r'dataset_mixed2\dataset_mixed'
features = []
labels = []
img_filenames = os.listdir(path_to_dataset)
for i, fn in enumerate(img_filenames):
if fn.split('.')[-1] != 'jpg' and fn.split('.')[-1] != 'bmp' and fn.split('.')[-1] != 'png':
continue
label = fn.split('-')[0]
# print(label)
labels.append(label)
path = os.path.join(path_to_dataset, fn)
img = cv2.imread(path)
features.append(extract_features(img))
# show an update every 1,000 images
if i > 0 and i % 1000 == 0:
print("[INFO] processed {}/{}".format(i, len(img_filenames)))
return features, labels
'''
load dataset and run and train dataset
'''
def run_experiment():
# Load dataset with extracted features
print('Loading dataset. This will take time ...')
features, labels = load_dataset()
# print(features)
# print(labels)
print('Finished loading dataset.')
# Since we don't want to know the performance of our classifier on images it has seen before
# we are going to withhold some images that we will test the classifier on after training
train_features, test_features, train_labels, test_labels = train_test_split(
features, labels, test_size=0.2, random_state=random_seed)
for model_name, model in classifiers.items():
print('############## Training', model_name, "##############")
# Train the model only on the training features
model.fit(train_features, train_labels)
# save the model to disk
filename = 'finalized_model.sav'
joblib.dump(model, filename)
# Test the model on images it hasn't seen before
accuracy = model.score(test_features, test_labels)
print(model_name, 'accuracy:', accuracy*100, '%')