-
Notifications
You must be signed in to change notification settings - Fork 1
/
tools.py
197 lines (171 loc) · 6.45 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import logging
import random
import cvxpy as cp
import networkx as nx
import numpy as np
import topologies
def graphGenerator(args):
temp_graph = None
if args.graph_type == "path":
temp_graph = nx.Graph()
temp_graph.add_node(0)
for n in range(1, args.graph_size):
temp_graph.add_node(n)
temp_graph.add_edge(n - 1, n)
logging.debug(temp_graph)
if args.graph_type == "erdos_renyi":
temp_graph = nx.erdos_renyi_graph(args.graph_size, args.graph_p)
if args.graph_type == "balanced_tree":
ndim = int(np.ceil(np.log(args.graph_size) / np.log(args.graph_degree)))
temp_graph = nx.balanced_tree(args.graph_degree, ndim)
if args.graph_type == "cicular_ladder":
ndim = int(np.ceil(args.graph_size * 0.5))
temp_graph = nx.circular_ladder_graph(ndim)
if args.graph_type == "cycle":
temp_graph = nx.cycle_graph(args.graph_size)
if args.graph_type == 'grid_2d':
ndim = int(np.ceil(np.sqrt(args.graph_size)))
temp_graph = nx.grid_2d_graph(ndim, ndim)
if args.graph_type == 'lollipop':
ndim = int(np.ceil(args.graph_size * 0.5))
temp_graph = nx.lollipop_graph(ndim, ndim)
if args.graph_type == 'expander':
ndim = int(np.ceil(np.sqrt(args.graph_size)))
temp_graph = nx.margulis_gabber_galil_graph(ndim)
if args.graph_type == "hypercube":
ndim = int(np.ceil(np.log(args.graph_size) / np.log(2.0)))
temp_graph = nx.hypercube_graph(ndim)
if args.graph_type == "star":
ndim = args.graph_size - 1
temp_graph = nx.star_graph(ndim)
if args.graph_type == 'barabasi_albert':
temp_graph = nx.barabasi_albert_graph(args.graph_size, args.graph_degree)
if args.graph_type == 'watts_strogatz':
temp_graph = nx.connected_watts_strogatz_graph(args.graph_size, args.graph_degree, args.graph_p)
if args.graph_type == 'regular':
temp_graph = nx.random_regular_graph(args.graph_degree, args.graph_size)
if args.graph_type == 'powerlaw_tree':
temp_graph = nx.random_powerlaw_tree(args.graph_size)
if args.graph_type == 'small_world':
ndim = int(np.ceil(np.sqrt(args.graph_size)))
temp_graph = nx.navigable_small_world_graph(ndim)
if args.graph_type == 'geant':
temp_graph = topologies.GEANT()
if args.graph_type == 'dtelekom':
temp_graph = topologies.Dtelekom()
if args.graph_type == 'abilene':
temp_graph = topologies.Abilene()
if args.graph_type == 'servicenetwork':
temp_graph = topologies.ServiceNetwork()
number_map = dict(list(zip(temp_graph.nodes(), list(range(len(temp_graph.nodes()))))))
graph = nx.Graph()
graph.add_nodes_from(list(number_map.values()))
for (x, y) in temp_graph.edges():
xx = number_map[x]
yy = number_map[y]
graph.add_edges_from(((xx, yy), (yy, xx)))
return graph
def listify(arg, type):
if arg == '_':
return []
if len(arg) == 0:
return
out = list(map(type, arg.split('-')))
return out
def zipf_distribution(s, N):
c = sum((1 / np.arange(1, N + 1) ** s))
return np.arange(1, N + 1) ** (-s) / c
def inv_dict(dictionary):
inv_dictionary = {}
for k, v in dictionary.items():
inv_dictionary[v] = inv_dictionary.get(v, []) + [k]
return inv_dictionary
def refresh_weights(edges, min_weight, max_weight):
weights = {}
for (x, y) in edges:
weights[(x, y)] = (random.uniform(min_weight, max_weight))
return weights
def _is_feasible(x, k):
return np.sum(x) <= k and np.all(x <= 1) and np.all(x >= 1)
def sample_simplex(N, K):
z = np.zeros(N)
per = np.arange(z.size)
np.random.shuffle(per)
for i in per:
x = np.random.uniform(0, np.min([K - sum(z), 1]))
z[i] = x
if sum(z) >= K:
break
return z
def round(x, xi=.5):
permutation = np.arange(x.size)
sum = 0
I = []
for i in range(x.size):
sum += x[permutation[i]]
if sum - len(I) >= xi:
I.append(permutation[i])
z = np.zeros(x.size)
z[np.array(I)] = 1
return z
# CVXPY-based projection
class EuclideanProjection:
def __init__(self, catalog_size, cache_size):
self.catalog_size = catalog_size
self.cache_size = cache_size
if catalog_size == 0:
return
x = cp.Variable(catalog_size, nonneg=True)
y_param = cp.Parameter(catalog_size)
constraints = [x <= 1, cp.sum(x) <= cache_size]
obj = cp.Minimize(cp.sum_squares(x - y_param)) # ( cp.sum((x - y_param) ** 2))
prob = cp.Problem(obj, constraints)
self.prob = prob
self.y_param = y_param
self.x = x
def project(self, y, warm_start=True):
self.y_param.value = y
self.prob.solve(warm_start=warm_start, solver='MOSEK')
return self.x.value
# Manual projection
class EuclideanProjection:
def __init__(self, catalog_size, cache_size):
self.catalog_size = catalog_size
self.cache_size = cache_size
self._y = np.zeros(self.catalog_size + 2)
self.inv_map = np.arange(catalog_size)
self.a, self.b = 0, catalog_size # initial kkt params predict
self.delta = 1
self.init = True
def _check_KKT(self, range_a, b_max, z, map, inv_map):
D, y, k = self.catalog_size, self._y, self.cache_size
y[D + 1] = np.inf
y[0] = -np.inf
y[1:D + 1] = np.copy(z[map])
delta = 1e-16
for a in range_a:
if k == D - a and y[a + 1] - y[a] >= 1 - delta:
b = a
y[:a + 1] = 0
y[b + 1:] = 1
self.a = a
self.b = b
return y[1:1 + D][inv_map]
for b in range(a + 1, b_max):
Tks = np.sum(y[a + 1:b + 1])
g = (k + b - D - Tks) / (b - a)
if y[a] + g <= delta and y[a + 1] + g > -delta and y[b] + g < 1 + delta and y[b + 1] + g >= 1 - delta:
y = y + g
y[:a + 1] = 0
y[b + 1:] = 1
self.a = a
self.b = b
return y[1:1 + D][inv_map]
def project(self, z):
D = self.catalog_size
self.map = np.argsort(z)
self.inv_map[self.map] = np.arange(D).astype(int)
self.init = False
range_a = range(0, D + 2)
b_max = D + 1
return self._check_KKT(range_a, b_max, z, self.map, self.inv_map)