forked from zhiji95/RiceQuant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_functions.py
758 lines (671 loc) · 27.6 KB
/
my_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
from __future__ import print_function
import numpy as np
import math
import matplotlib.pyplot as plt
import time
import pandas as pd
import talib
import tensorflow as tf
import pickle
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn import preprocessing
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import accuracy_score,make_scorer
from rqdatac import *
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
def get_dataframe(index_component, input_window_length, forecast_horizon, start_date, end_date,frequency, classnum, method):
#get dataframe from sigle company
#input shortcuts
iwl = input_window_length
fh = forecast_horizon
method_list = ['ANN','SVM']
if not (method in method_list):
raise Exception(method + ' is not in' + str(method_list))
ic = index_component
this_ti = get_price(ic, start_date, end_date, frequency = frequency)
dates = this_ti.index[:-fh]
close = np.array(this_ti['close'])
next_close = get_next_close(close, fh)
high = np.array(this_ti['high'])
low = np.array(this_ti['low'])
Y = labeling(fh, close[:-fh], next_close, classes = classnum)
sma = talib.SMA(close,iwl)[:-fh]
ema = talib.EMA(close,iwl)[:-fh]
atr = talib.ATR(high, low, close, iwl)[:-fh]
admi = talib.ADX(high, low, close, iwl)[:-fh]
cci = talib.CCI(high, low, close, iwl)[:-fh]
roc = talib.ROC(close, timeperiod=iwl)[:-fh]
rsi = talib.RSI(close, timeperiod=iwl)[:-fh]
williams = talib.WILLR(high, low, close, timeperiod=iwl)[:-fh]
slowk = stochasticK(high, low, close, iwl)[:-fh]
slowd = talib.EMA(slowk,3)
#form a initial data frame
df = pd.DataFrame({
'close price t': close[:-fh],
'close price t+s': next_close,
# 'Y':Y,
'SMA':sma,
'EMA':ema,
'ATR':atr,
'ADMI':admi,
'CCI':cci,
'ROC': roc,
'RSI':rsi,
'Williams %R':williams,
'Stochastic %K':slowk,
'Stochastic %D':slowd,
}, index=dates)
# append label according to the method
if method == 'SVM':
df['Y'] = Y
df = df.dropna(axis=0,how='any')
y = df['Y'].values
if method == 'ANN':
one_hot_code = get_onehotcode(Y)
ys = []
for i in range(len(one_hot_code[0])):
string = 'Y' + str(i+1)
ys.append(string)
df[string] = one_hot_code[:,i]
df = df.dropna(axis=0,how='any')
y = df[ys].values
x = df[['ADMI', 'ATR', 'CCI', 'EMA', 'ROC', 'RSI', 'SMA', 'Stochastic %D',
'Stochastic %K', 'Williams %R']].values
return x, y
def stochasticK( high, low, close, n):
result = []
for i in range(len(high)):
if i < n:
result.append(np.nan)
else:
hh = max(high[i - n: i])
ll = min(low[i - n: i])
ct = close[i]
if (hh != ll):
k = 100* (ct - ll)/(hh - ll)
else:
k = 0
result.append(k)
return np.array(result)
def get_next_close(close, fh):
next_close = []
size = len(close)
for i in range(size - fh):
# if (i + fh < size):
next_close.append(close[i + fh])
# else:
# next_close[i] = NaN
return next_close
def labeling(fh, ct, cts, classes):
#fh -- forecast horizon
#ct -- closing price of a stock on day t
#cts -- closing price of a stock on day t+s
# return value:
# 0 stands for Up
# 1 stands for no move
# 2 stands for down
label = []
for i in range(len(ct)):
value = (cts[i] - ct[i])/ct[i]
if classes == 3:
threshold = threshold_generator(fh)
if (value > threshold):
label.append(0)
elif (abs(value) <= threshold):
label.append(1)
else:
label.append(2)
elif classes == 2:
if value > 0:
label.append(0)
else:
label.append(1)
else:
print("Classes can only be 2 or 3")
return label
def threshold_generator(fh):
if fh == 1:
ts = 0.63
elif fh == 3:
ts = 1.15
elif fh == 5:
ts = 1.49
elif fh == 7:
ts = 1.79
elif fh == 10:
ts = 2.14
elif fh == 15:
ts = 2.65
elif fh == 20:
ts = 3.08
elif fh == 25:
ts = 3.48
elif fh == 30:
ts = 3.94
else:
print('Please search online for more information.')
return ts/100
def accuracy_calculator(prediction, truth):
n = len(prediction)
true = 0
for i in range(n):
if prediction[i] == truth[i]:
true += 1
accuracy = true/n
return accuracy
def get_stat_ANN(iwl, fh, from_index, to_index, names, bs, epochs, neuron_num, start_date, end_date,freq, split = 0.8, verbose = False):
classnum = neuron_num[-1]
idx = names[from_index: to_index]
d_test, d_train = [], []
a_train = []
a_test = []
for name in idx:
X, y = get_dataframe(name, iwl, fh, start_date, end_date, freq, classnum = classnum, method = 'ANN')
edge = np.int(split*len(y))
train_X, test_X, train_y, test_y = X[:edge], X[edge:],y[:edge],y[edge:]
scaler = preprocessing.StandardScaler().fit(train_X)
X_train_nomalized = scaler.transform(train_X)
X_test_nomalized = scaler.transform(test_X)
layer_num = len(neuron_num)
nx = neuron_num[0]
ny = neuron_num[layer_num - 1]
weights, biases = {}, {}
#get nomalized train and test set
x = tf.placeholder('float32',[None, nx])
y = tf.placeholder('float32',[None, ny])
layer_l = x
for l in range(layer_num - 2):
input_num = neuron_num[l]
hidden_num = neuron_num[l + 1]
weights['w' + str(l+1)] = tf.Variable(tf.random_normal([input_num, hidden_num]))
biases['b' + str(l+1)] = tf.Variable(tf.random_normal([hidden_num]))
# layer_l = tf.layers.dense(layer_l, hudden_num, activation = tf.nn.relu)
layer_l = tf.nn.relu(tf.add(tf.matmul(layer_l, weights['w' + str(l+1)]), biases['b' + str(l+1)]))
weights['out'] = tf.Variable(tf.random_normal([hidden_num, ny]))
biases['out'] = tf.Variable(tf.random_normal([ny]))
prediction = tf.nn.softmax(tf.matmul(layer_l, weights['out']) + biases['out'])
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
d_train.append(nn_distribution(train_y, classnum))
d_test.append(nn_distribution(test_y, classnum))
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
losses, epoches = [],[]
for epoch in range(epochs):
epoch_loss=0
i=0
while i < len(X_train_nomalized):
start = i
end = i + bs
batch_x = np.array(X_train_nomalized[start:end])
batch_y = np.array(train_y[start:end])
_,c = sess.run([optimizer,cost] , feed_dict = {x: batch_x , y : batch_y})
if verbose:
epoch_loss+= c
i+= bs
if (verbose) :
if (epoch % 1000 == 0):
print("Epoch",epoch , 'completed out of ' ,epochs, ' loss: ', epoch_loss )
losses.append(epoch_loss)
epoches.append(epoch)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
print(tf.argmax(prediction,1).eval({x:X_test_nomalized}))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
a_test.append(accuracy.eval({x:X_test_nomalized , y: test_y}))
a_train.append(accuracy.eval({x:X_train_nomalized , y: train_y}))
return pd.DataFrame({
'训练分布':d_train,
'测试分布':d_test,
'训练精度ANN': a_train,
'测试精度ANN': a_test
},index = idx)
def get_stat_SVM(iwl, fh, from_index, to_index, tuned_parameters, names,start_date, end_date,freq,classnum, split = 0.8):
idx = names[from_index: to_index]
d_test, d_train = [], []
a_train = []
a_test = []
for name in idx:
#get cleaned technical indicators
X, y = get_dataframe(name, iwl, fh, start_date, end_date,freq, classnum = classnum, method = 'SVM')
edge = np.int(split*len(y))
X_train, X_test, y_train, y_test = X[:edge], X[edge:],y[:edge],y[edge:]
scaler = preprocessing.StandardScaler().fit(X_train)
X_train_nomalized = scaler.transform(X_train)
X_test_nomalized = scaler.transform(X_test)
clf = GridSearchCV(SVC(), tuned_parameters, cv = 5,
scoring = 'accuracy')
clf.fit(X_train_nomalized, y_train)
prediction_train = clf.predict(X_train_nomalized)
prediction_test = clf.predict(X_test_nomalized)
print("2 classes prediction: ", prediction_train, prediction_test)
a_train.append(accuracy_score(y_train, prediction_train))
a_test.append(accuracy_score(y_test, prediction_test))
# z_train, t_train = ZeroTwoFrequency(y_train)
# z_test, t_test = ZeroTwoFrequency(y_test)
d_train.append(svm_distribution(y_train, classnum))
d_test.append(svm_distribution(y_test, classnum))
return pd.DataFrame({
'训练分布':d_train,
'测试分布':d_test,
'训练精度SVM': a_train,
'测试精度SVM': a_test
},index = idx)
def get_stat_integrated(iwl, fh, from_index, to_index,tuned_parameters, names, bs, epochs, neuron_num, start_date, end_date,freq, split = 0.8, verbose = False):
idx = names[from_index: to_index]
d_test, d_train = [], []
a_train = []
a_test = []
classnum = neuron_num[-1]
for name in idx:
#SVM
X, y = get_dataframe(name, iwl, fh, start_date, end_date,freq, classnum = classnum, method = 'SVM')
edge = np.int(split*len(y))
X_train, X_test, y_train, y_test = X[:edge], X[edge:],y[:edge],y[edge:]
scaler = preprocessing.StandardScaler().fit(X_train)
X_train_nomalized = scaler.transform(X_train)
X_test_nomalized = scaler.transform(X_test)
clf = GridSearchCV(SVC(), tuned_parameters, cv = 5,
scoring = 'accuracy')
clf.fit(X_train_nomalized, y_train)
pred_train_SVM = clf.predict(X_train_nomalized)
pred_test_SVM = clf.predict(X_test_nomalized)
# ANN
X, y = get_dataframe(name, iwl, fh, start_date, end_date, freq, classnum = classnum, method = 'ANN')
edge = np.int(split*len(y))
train_X, test_X, train_y, test_y = X[:edge], X[edge:],y[:edge],y[edge:]
scaler = preprocessing.StandardScaler().fit(train_X)
X_train_nomalized = scaler.transform(train_X)
X_test_nomalized = scaler.transform(test_X)
layer_num = len(neuron_num)
nx = neuron_num[0]
ny = neuron_num[layer_num - 1]
weights, biases = {}, {}
#get nomalized train and test set
x = tf.placeholder('float32',[None, nx])
y = tf.placeholder('float32',[None, ny])
layer_l = x
for l in range(layer_num - 2):
input_num = neuron_num[l]
hidden_num = neuron_num[l + 1]
weights['h' + str(l+1)] = tf.Variable(tf.random_normal([input_num, hidden_num]))
biases['b' + str(l+1)] = tf.Variable(tf.random_normal([hidden_num]))
layer_l = tf.nn.relu(tf.add(tf.matmul(layer_l, weights['h' + str(l+1)]), biases['b' + str(l+1)]))
weights['out'] = tf.Variable(tf.random_normal([hidden_num, ny]))
biases['out'] = tf.Variable(tf.random_normal([ny]))
prediction = tf.nn.softmax(tf.matmul(layer_l, weights['out']) + biases['out'])
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
d_train.append(nn_distribution(train_y, classnum))
d_test.append(nn_distribution(test_y, classnum))
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
losses, epoches = [],[]
for epoch in range(epochs):
epoch_loss=0
i=0
while i < len(X_train_nomalized):
start = i
end = i + bs
batch_x = np.array(X_train_nomalized[start:end])
batch_y = np.array(train_y[start:end])
_,c = sess.run([optimizer,cost] , feed_dict = {x: batch_x , y : batch_y})
if verbose:
epoch_loss+= c
i+= bs
if (verbose) :
if (epoch % 1000 == 0):
print("Epoch",epoch , 'completed out of ' ,epochs, ' loss: ', epoch_loss )
losses.append(epoch_loss)
epoches.append(epoch)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
pred_train_ANN = tf.argmax(prediction,1).eval({x:X_train_nomalized , y: train_y})
pred_test_ANN = tf.argmax(prediction,1).eval({x:X_test_nomalized , y: test_y})
# accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
prediction_train = pred_integration(pred_train_ANN, pred_train_SVM)
prediction_test = pred_integration(pred_test_ANN, pred_test_SVM)
print(pred_test_SVM)
print(pred_test_ANN)
print(prediction_test )
a_train.append(updown_accuracy(y_train, pred_train_SVM, pred_train_ANN))
a_test.append(updown_accuracy(y_test, pred_test_SVM, pred_test_ANN))
return pd.DataFrame({
'训练分布':d_train,
'测试分布':d_test,
'训练精度': a_train,
'测试精度': a_test
},index = idx)
def updown_accuracy(label, p_ann,p_svm):
length = 0
correct = 0
for i in range(len(label)):
if p_ann[i] == p_svm[i]:
length += 1
if p_ann[i] == label[i]:
correct +=1
return correct/length
def pred_integration(p1, p2):
result = []
for i in range(len(p1)):
if (p1[i] * 2) == p2[i]:
result.append(p1[i])
else:
result.append(1)
return result
def svm_distribution(label, classnum):
if (classnum == 2):
z, t = ZeroTwoFrequency(label)
return 'Up:' + str(z) + ' Down:' + str(t)
if (classnum == 3):
z, o, t = ZeroOneTwoFrequency(label)
return 'Up:' + str(z) + ' Flat: ' + str(o) + ' Down:' + str(t)
def ZeroOneTwoFrequency(label):
z, o, t = 0, 0, 0
n = len(label)
for i in label:
if (i == 0):
z += 1
elif (i == 1):
o += 1
elif (i == 2):
t += 1
else:
print("Illegal input")
return round(z/n,2),round(o/n,2),round(t/n,2)
def save_model_ANN(iwl, fh, name, bs, epochs, neuron_num, start_date, end_date,freq, verbose = False):
classnum = neuron_num[-1]
X, Y = get_dataframe(name, iwl, fh, start_date, end_date, freq, classnum = classnum, method = 'ANN')
scaler = preprocessing.StandardScaler().fit(X)
X_nomalized = scaler.transform(X)
layer_num = len(neuron_num)
nx = neuron_num[0]
ny = neuron_num[layer_num - 1]
weights, biases = {}, {}
#get nomalized train and test set
x = tf.placeholder('float32',[None, nx])
y = tf.placeholder('float32',[None, ny])
layer_l = x
for l in range(layer_num - 2):
input_num = neuron_num[l]
hidden_num = neuron_num[l + 1]
weights['h' + str(l+1)] = tf.Variable(tf.random_normal([input_num, hidden_num]))
biases['b' + str(l+1)] = tf.Variable(tf.random_normal([hidden_num]))
layer_l = tf.nn.relu(tf.add(tf.matmul(layer_l, weights['h' + str(l+1)]), biases['b' + str(l+1)]))
weights['out'] = tf.Variable(tf.random_normal([hidden_num, ny]))
biases['out'] = tf.Variable(tf.random_normal([ny]))
prediction = tf.nn.softmax(tf.matmul(layer_l, weights['out']) + biases['out'])
tf.add_to_collection('pred', y)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
losses, epoches = [],[]
for epoch in range(epochs):
epoch_loss=0
i=0
while i < len(X_nomalized):
start = i
end = i + bs
batch_x = np.array(X_nomalized[start:end])
batch_y = np.array(Y[start:end])
_,c = sess.run([optimizer,cost] , feed_dict = {x: batch_x , y : batch_y})
if verbose:
epoch_loss+= c
i+= bs
if (verbose) :
if (epoch % 1000 == 0):
print("Epoch",epoch , 'completed out of ' ,epochs, ' loss: ', epoch_loss )
losses.append(epoch_loss)
epoches.append(epoch)
path = "./"
model_name = "ann" + str(classnum) +".ckpt"
print("model name is : " + model_name)
saver.save(sess, path + model_name)
def save_model_rf(ic, iwl, fh, start_date, end_date, freq, classnum, name):
acc_scorer = make_scorer(accuracy_score)
X, y = get_dataframe(ic, iwl, fh, start_date, end_date,frequency = freq, classnum = classnum, method = 'SVM')
scaler = preprocessing.StandardScaler().fit(X)
X_normalized = scaler.transform(X)
clf = GridSearchCV(estimator = RandomForestClassifier(min_samples_split=100,
min_samples_leaf=20,max_depth=8,max_features='sqrt' ,random_state=10),
param_grid = tuned_parameters, scoring=acc_scorer,cv=5)
clf.fit(X_normalized, y/2)
with open('models/'+ name +str(classnum)+ '.pickle', 'wb') as fw:
pickle.dump(clf, fw)
def save_model_nb(ic, iwl, fh, start_date, end_date,tuned_parameters, freq,classnum, name):
X, y = get_dataframe(ic, iwl, fh, start_date, end_date,frequency = freq, classnum = classnum, method = 'SVM')
scaler = preprocessing.StandardScaler().fit(X)
X_normalized = scaler.transform(X)
# print("X_n: ",X_nomalized)
clf = GaussianNB()
clf.fit(X_normalized, y)
with open('models/'+ name +str(classnum)+ '.pickle', 'wb') as fw:
pickle.dump(clf, fw)
def save_model_SVM(ic, iwl, fh, start_date, end_date, tuned_parameters, freq,classnum, name):
X, y = get_dataframe(ic, iwl, fh, start_date, end_date,frequency = freq, classnum = classnum, method = 'SVM')
scaler = preprocessing.StandardScaler().fit(X)
X_normalized = scaler.transform(X)
print("X_n: ",X_normalized)
clf2 = GridSearchCV(SVC(), tuned_parameters, cv=5,
scoring = 'accuracy')
clf2.fit(X_normalized, y)
with open('models/'+ name + str(classnum)+'.pickle', 'wb') as fw:
pickle.dump(clf2, fw)
def get_stat_nb(iwl, fh, from_index, to_index, names,start_date, end_date,freq,classnum, split = 0.8):
idx = names[from_index: to_index]
a_train = []
a_test = []
for name in idx:
#get cleaned technical indicators
X, y = get_dataframe(name, iwl, fh, start_date, end_date,freq, classnum = classnum, method = 'SVM')
edge = np.int(split*len(y))
X_train, X_test, y_train, y_test = X[:edge], X[edge:],y[:edge],y[edge:]
scaler = preprocessing.StandardScaler().fit(X_train)
X_train_nomalized = scaler.transform(X_train)
X_test_nomalized = scaler.transform(X_test)
clf = GaussianNB()
clf.fit(X_train_nomalized, y_train)
prediction_train = clf.predict(X_train_nomalized)
prediction_test = clf.predict(X_test_nomalized)
print("2 classes prediction: ", prediction_train, prediction_test)
a_train.append(accuracy_score(y_train, prediction_train))
a_test.append(accuracy_score(y_test, prediction_test))
# z_train, t_train = ZeroTwoFrequency(y_train)
# z_test, t_test = ZeroTwoFrequency(y_test)
return pd.DataFrame({
'训练精度nb': a_train,
'测试精度nb': a_test
},index = idx)
def get_stat_rf(iwl, fh, from_index, to_index, tuned_parameters, names,start_date, end_date,freq,classnum, split = 0.8):
idx = names[from_index: to_index]
a_train = []
a_test = []
acc_scorer = make_scorer(accuracy_score)
for name in idx:
#get cleaned technical indicators
X, y = get_dataframe(name, iwl, fh, start_date, end_date,freq, classnum = classnum, method = 'SVM')
edge = np.int(split*len(y))
X_train, X_test, y_train, y_test = X[:edge], X[edge:],y[:edge],y[edge:]
scaler = preprocessing.StandardScaler().fit(X_train)
X_train_normalized = scaler.transform(X_train)
X_test_normalized = scaler.transform(X_test)
clf = GridSearchCV(estimator = RandomForestClassifier(min_samples_split=100,
min_samples_leaf=20,max_depth=8,max_features='sqrt' ,random_state=10),
param_grid = tuned_parameters, scoring=acc_scorer,cv=5)
clf.fit(X_train_normalized, y_train/2)
prediction_train = clf.predict(X_train_normalized)
prediction_test = clf.predict(X_test_normalized)
print("2 classes prediction: ", prediction_train, prediction_test)
a_train.append(accuracy_score(y_train, prediction_train*2))
a_test.append(accuracy_score(y_test, prediction_test*2))
return pd.DataFrame({
'训练精度rf': a_train,
'测试精度rf': a_test
},index = idx)
def save_dataframe(df, name, sheetname = 'two classes'):
with pd.ExcelWriter(name + '.xls') as writer:
df.to_excel(writer,sheet_name = sheetname)
def ZeroTwoFrequency(label):
z, t = 0,0
n = len(label)
for i in label:
if (i == 0):
z += 1
elif (i == 2):
t += 1
else:
print("Illegal input")
return round(z/n,2), round(t/n,2)
def ZeroOneTwoFrequency_nn(label):
z, o, t = 0, 0, 0
n = len(label)
for i in label:
if (i[0] == 1):
z += 1
elif (i[1] == 1):
o += 1
elif (i[2] == 1):
t += 1
else:
print("Illegal input")
return round(z/n,2),round(o/n,2),round(t/n,2)
def ZeroTwoFrequency_nn(label):
z, t = 0,0
n = len(label)
for i in label:
if (i[0] == 1):
z += 1
elif (i[1] == 1):
t += 1
else:
print("Illegal input")
return round(z/n,2), round(t/n,2)
def nn_distribution(label, classnum):
if (classnum == 2):
z, t = ZeroTwoFrequency_nn(label)
return 'Up:' + str(z) + ' Down:' + str(t)
if (classnum == 3):
z, o, t = ZeroOneTwoFrequency_nn(label)
return 'Up:' + str(z) + ' 平: ' + str(o) + ' Down:' + str(t)
def ann_parameter_selection(name, neuron_num, class_num, batch_size, hm_epochs, iwl, fh,start_date,end_date, verbose = False, frequency = '1d', split = 0.8):
if (len(neuron_num) < 3):
print ("len(neuron_num) should be greater than 2")
#get dataframe
X_raw ,Y_raw = get_dataframe(name, iwl, fh, freq = frequency, classnum = class_num, method = 'ANN')
layer_num = len(neuron_num)
nx = neuron_num[0]
ny = neuron_num[layer_num - 1]
weights, biases = {}, {}
#get nomalized train and test set
edge = np.int(split * len(Y_raw))
train_x, test_x, train_y, test_y = X_raw[:edge], X_raw[edge:], Y_raw[:edge], Y_raw[edge:]
scaler = preprocessing.StandardScaler().fit(train_x)
train_x = scaler.transform(train_x)
test_x = scaler.transform(test_x)
x = tf.placeholder('float32',[None, nx])
y = tf.placeholder('float32',[None, ny])
layer_l = x
for l in range(layer_num - 2):
input_num = neuron_num[l]
hidden_num = neuron_num[l + 1]
weights['h' + str(l+1)] = tf.Variable(tf.random_normal([input_num, hidden_num]))
biases['b' + str(l+1)] = tf.Variable(tf.random_normal([hidden_num]))
layer_l = tf.add(tf.matmul(layer_l, weights['h' + str(l+1)]), biases['b' + str(l+1)])
weights['out'] = tf.Variable(tf.random_normal([hidden_num, ny]))
biases['out'] = tf.Variable(tf.random_normal([ny]))
prediction = tf.matmul(layer_l, weights['out']) + biases['out']
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
losses, epoches = [],[]
for epoch in range(hm_epochs):
epoch_loss=0
i=0
while i < len(train_x):
start = i
end = i + batch_size
batch_x = np.array(train_x[start:end])
batch_y = np.array(train_y[start:end])
_,c = sess.run([optimizer,cost] , feed_dict = {x: batch_x , y : batch_y})
if verbose:
epoch_loss+= c
i+= batch_size
if (verbose) :
if (epoch % 1000 == 0):
print("Epoch",epoch , 'completed out of ' ,hm_epochs, ' loss: ', epoch_loss )
losses.append(epoch_loss)
epoches.append(epoch)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
print(tf.argmax(prediction,1).eval({x:test_x , y: test_y}))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
a_test = accuracy.eval({x:test_x , y: test_y})
a_train = accuracy.eval({x:train_x , y: train_y})
return a_test, a_train
def get_onehotcode(Y):
array = np.array(Y)
enc = preprocessing.OneHotEncoder()
enc.fit(np.array_split(array, len(array)))
one_hot_code = enc.transform(np.array_split(array, len(array))).toarray()
return one_hot_code
class info():
def __init__(self, name):
tp = type(name)
if (tp) != str:
raise Exception("the input type must be str, but got ", tp)
self.name = str(name)
get_stat_SVM_dic = {
'iw':'input window length',
'fh':'forecast horizon',
'from_index':'start index of names you would like to get stat',
'to_index':'the end index of names you would like to get stat',
'tuned_parameters':'the parameter of SVC, for example: gamma, C, kernel. Please save them as a list as the example:' +
"tuned_parameters = {'kernel': ['rbf'], 'gamma': gammas, 'C': Cs}",
'names':'the list of names of futures or shares',
'start_date':'the start date of the data',
'end_date':'the end date of the date',
'freq':'the frequency of data, for example "1d", "1m","1h"',
'classnum':'the number of class you try to classify',
'split':'the percentage of training set, default is 0.8',
'verbose':'whether you would like to see some intermedium results, default is False'
}
get_stat_ANN_dic = {
'iwl':'input window length',
'fh':'forecast horizon',
'from_index':'start index of names you would like to get stat',
'to_index':'the end index of names you would like to get stat',
'names':'the list of names of futures or shares',
'bs':'batch size (a hyper parameter need to be tuned)',
'epochs':'how many epochs you would like to run',
'neuron_num':'a list represent a neural network, each value in the list means the number of neurons in each layer',
'start_date':'the start date of the data',
'end_date':'the end date of the date',
'freq':'the frequency of data, for example "1d", "1m","1h"',
'split':'the percentage of training set, default is 0.8',
'verbose':'whether you would like to see some intermedium results, default is False'
}
self.function_dic_chinese = {
'get_stat_ANN':'得到每一支期货的测试集,训练集分布及ANN算法的预测',
'get_stat_SVM':'得到每一支期货的测试集,训练集分布及SVM算法的预测',
'get_dataframe':'得到每一支期货技术指标及收盘价,并分成X和y',
'ann_parameter_selection': '测试不同输入参数下ANN的精度'
}
self.parameter_dic = {
'get_stat_ANN' : get_stat_ANN_dic,
'get_stat_SVM' : get_stat_SVM_dic,
}
def function_intro(self):
print(self.function_dic_chinese[self.name])
def all_parameters(self):
print("parameters of "+self.name+" are as follow")
print(self.parameter_dic[self.name].keys())
print('Please type "parameters_intro(parameter you try to know)"')
def parameters_intro(self, parameter_name):
print(self.parameter_dic[self.name][parameter_name])
def print_all_parameter_intro(self):
d = self.parameter_dic[self.name]
for name in d.keys():
print(name + " : " + d[name])