-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
286 lines (228 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""
This file contains the code to train the model.
"""
import warnings
from pathlib import Path
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, random_split
from torch.utils.tensorboard import SummaryWriter
import torchmetrics
# Huggingface datasets and tokenizers
from tqdm import tqdm
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
from datasets import load_dataset
from model import build_transformer
from dataset import BilingualDataset, causal_mask
from config import get_config, get_weights_file_path, latest_weights_file_path
def greedy_decode(model, source, source_mask, tokenizer_src, tokenizer_tgt, max_len, device):
"""
Greedy decoding algorithm. This is used to generate the output of the model for a given input.
"""
# Get the indicies of the sos and eos tokens
sos_idx = tokenizer_tgt.token_to_id('[SOS]')
eos_idx = tokenizer_tgt.token_to_id('[EOS]')
# Precompute the encoder output and reuse it for every step
encoder_output = model.encode(source, source_mask)
# Initialize the decoder input with the sos token
decoder_input = torch.empty(1, 1).fill_(sos_idx).type_as(source).to(device)
while True:
# Break if the decoder input is too long
if decoder_input.size(1) == max_len:
break
# build mask for target
decoder_mask = causal_mask(decoder_input.size(1)).type_as(source_mask).to(device)
# calculate output
out = model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
# get next token
prob = model.project(out[:, -1])
# Use torch.max to get the index of the largest probability, which is the next word and hence why
# we call this greedy decoding
_, next_word = torch.max(prob, dim=1)
# Add the next word to the decoder input
decoder_input = torch.cat(
[decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1
)
# Break if the next word is the eos token
if next_word == eos_idx:
break
# Return the decoder input without the sos token
return decoder_input.squeeze(0)
def run_validation(model, validation_ds, tokenizer_src, tokenizer_tgt, max_len, device, print_msg, global_step, writer, num_examples=2):
"""
Runs the validation dataset through the model and prints out the source, target and model output.
"""
model.eval()
count = 0
source_texts = []
expected = []
predicted = []
console_width = 80
# Do not compute gradients, since we are not training the model here, only evaluating it
with torch.no_grad():
for batch in validation_ds:
count += 1
encoder_input = batch["encoder_input"].to(device) # (b, seq_len)
encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len)
# check that the batch size is 1
assert encoder_input.size(
0) == 1, "Batch size must be 1 for validation"
model_out = greedy_decode(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, max_len, device)
source_text = batch["src_text"][0]
target_text = batch["tgt_text"][0]
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
source_texts.append(source_text)
expected.append(target_text)
predicted.append(model_out_text)
# Print the source, target and model output
print_msg('-'*console_width)
print_msg(f"{f'SOURCE: ':>12}{source_text}")
print_msg(f"{f'TARGET: ':>12}{target_text}")
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")
if count == num_examples:
print_msg('-'*console_width)
break
if writer:
# Evaluate the character error rate
# Compute the char error rate
metric = torchmetrics.CharErrorRate()
cer = metric(predicted, expected)
writer.add_scalar('validation cer', cer, global_step)
writer.flush()
# Compute the word error rate
metric = torchmetrics.WordErrorRate()
wer = metric(predicted, expected)
writer.add_scalar('validation wer', wer, global_step)
writer.flush()
# Compute the BLEU metric
metric = torchmetrics.BLEUScore()
bleu = metric(predicted, expected)
writer.add_scalar('validation BLEU', bleu, global_step)
writer.flush()
def get_all_sentences(ds, lang):
"""
Generator that yields all the sentences in the dataset for the given language.
"""
for item in ds:
yield item['translation'][lang]
def get_or_build_tokenizer(config, ds, lang):
"""
Returns the tokenizer for the given language. If the tokenizer does not exist,
it will be built and saved.
"""
tokenizer_path = Path(config['tokenizer_file'].format(lang))
if not Path.exists(tokenizer_path):
# Most code taken from: https://huggingface.co/docs/tokenizers/quicktour
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2)
tokenizer.train_from_iterator(get_all_sentences(ds, lang), trainer=trainer)
tokenizer.save(str(tokenizer_path))
else:
tokenizer = Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def get_ds(config):
# It only has the train split, so we divide it overselves
ds_raw = load_dataset(f"{config['datasource']}", f"{config['lang_src']}-{config['lang_tgt']}", split='train')
# Build tokenizers
tokenizer_src = get_or_build_tokenizer(config, ds_raw, config['lang_src'])
tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config['lang_tgt'])
# Keep 90% for training, 10% for validation
train_ds_size = int(0.9 * len(ds_raw))
val_ds_size = len(ds_raw) - train_ds_size
train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])
train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
# Find the maximum length of each sentence in the source and target sentence
max_len_src = 0
max_len_tgt = 0
for item in ds_raw:
src_ids = tokenizer_src.encode(item['translation'][config['lang_src']]).ids
tgt_ids = tokenizer_tgt.encode(item['translation'][config['lang_tgt']]).ids
max_len_src = max(max_len_src, len(src_ids))
max_len_tgt = max(max_len_tgt, len(tgt_ids))
print(f'Max length of source sentence: {max_len_src}')
print(f'Max length of target sentence: {max_len_tgt}')
train_dataloader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True)
val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True)
return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt
def get_model(config, vocab_src_len, vocab_tgt_len):
model = build_transformer(vocab_src_len, vocab_tgt_len, config["seq_len"], config['seq_len'], d_model=config['d_model'])
return model
def train_model(config):
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using device:", device)
if (device == 'cuda'):
print(f"Device name: {torch.cuda.get_device_name(device.index)}")
print(f"Device memory: {torch.cuda.get_device_properties(device.index).total_memory / 1024 ** 3} GB")
device = torch.device(device)
# Make sure the weights folder exists
Path(f"{config['datasource']}_{config['model_folder']}").mkdir(parents=True, exist_ok=True)
train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)
model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device)
# Tensorboard
writer = SummaryWriter(config['experiment_name'])
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps=1e-9)
# If the user specified a model to preload before training, load it
initial_epoch = 0
global_step = 0
preload = config['preload']
model_filename = latest_weights_file_path(config) if preload == 'latest' else get_weights_file_path(config, preload) if preload else None
if model_filename:
print(f'Preloading model {model_filename}')
state = torch.load(model_filename)
model.load_state_dict(state['model_state_dict'])
initial_epoch = state['epoch'] + 1
optimizer.load_state_dict(state['optimizer_state_dict'])
global_step = state['global_step']
else:
print('No model to preload, starting from scratch')
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_src.token_to_id('[PAD]'), label_smoothing=0.1).to(device)
for epoch in range(initial_epoch, config['num_epochs']):
torch.cuda.empty_cache()
model.train()
batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}")
for batch in batch_iterator:
encoder_input = batch['encoder_input'].to(device) # (b, seq_len)
decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)
# Run the tensors through the encoder, decoder and the projection layer
encoder_output = model.encode(encoder_input, encoder_mask) # (B, seq_len, d_model)
decoder_output = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask) # (B, seq_len, d_model)
proj_output = model.project(decoder_output) # (B, seq_len, vocab_size)
# Compare the output with the label
label = batch['label'].to(device) # (B, seq_len)
# Compute the loss using a simple cross entropy
loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})
# Log the loss
writer.add_scalar('train loss', loss.item(), global_step)
writer.flush()
# Backpropagate the loss
loss.backward()
# Update the weights
optimizer.step()
optimizer.zero_grad(set_to_none=True)
# run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step, writer)
if config['validation_each_step']:
run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step, writer)
global_step += 1
# Run validation at the end of every epoch
run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step, writer)
# Save the model at the end of every epoch
model_filename = get_weights_file_path(config, f"{epoch:02d}")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'global_step': global_step
}, model_filename)
if __name__ == '__main__':
warnings.filterwarnings("ignore")
config = get_config()
train_model(config)