This repository has been archived by the owner on May 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
final_output.txt
1077 lines (896 loc) · 37.2 KB
/
final_output.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
C:\Users\taxborn\PycharmProjects\mauthPart2\venv\Scripts\python.exe C:\Users\taxborn\PycharmProjects\mauthPart2\main.py
mAuth Models Run.
Current parameters:
Train/Test split: 70.0/30.0
Random state constant for reproducibility: 0
Feature file used: ./data/user_all_features_SQ128.csv
[Sequencing] length used: 128
[Anomaly detection] Percentage of negative (imposter) data: 50.0%
Starting processing for subject 0
> features selected:
Index(['ID', 'mean_x_speed', 'mean_y_speed', 'mean_speed', 'mean_x_acc',
'mean_y_acc', 'mean_acc', 'mean_jerk', 'mean_ang', 'mean_curve',
'mean_tan', 'std_x_speed', 'std_y_speed', 'std_speed', 'std_x_acc',
'std_y_acc', 'std_acc', 'std_ang', 'std_jerk', 'std_curve', 'std_tan',
'min_tan', 'min_x_speed', 'min_y_speed', 'min_speed', 'min_x_acc',
'min_y_acc', 'min_acc', 'min_ang', 'min_jerk', 'min_curve',
'max_x_speed', 'max_y_speed', 'max_speed', 'max_x_acc', 'max_y_acc',
'max_acc', 'max_ang', 'max_jerk', 'max_curve', 'max_tan', 'traj_length',
'numCritPoints', 'mean_speed_over_dist', 'std_speed_over_dist',
'min_speed_over_dist', 'max_speed_over_dist',
'mean_acceleration_over_dist', 'std_acceleration_over_dist',
'max_acceleration_over_dist', 'min_acceleration_over_dist',
'mean_smoothness', 'std_smoothness', 'min_smoothness', 'max_smoothness',
'area_under_curve'],
dtype='object')
------------------- Starting KNN --------------------
number of events: 103373, k = 3
> KNN Fit time: 0.01s
> KNN Predict time: 12.689s
> KNN Can process 3491.565 events / second
k-Nearest Neighbors subject 0 Validation details:
Accuracy: 0.972, Precision: 0.963, Recall: 0.982, F1: 0.972
[[21460 834]
[ 398 21611]]
FAR : 0.038 FRR: 0.018 ERR: 0.028
Report:
precision recall f1-score support
0.0 0.98 0.96 0.97 22294
1.0 0.96 0.98 0.97 22009
accuracy 0.97 44303
macro avg 0.97 0.97 0.97 44303
weighted avg 0.97 0.97 0.97 44303
----- Finished k-Nearest Neighbors on subject 0 -----
Starting processing for subject 1
------------------- Starting KNN --------------------
number of events: 109258, k = 3
> KNN Fit time: 0.01s
> KNN Predict time: 14.484s
> KNN Can process 3232.964 events / second
k-Nearest Neighbors subject 1 Validation details:
Accuracy: 0.979, Precision: 0.968, Recall: 0.989, F1: 0.979
[[22856 760]
[ 245 22965]]
FAR : 0.033 FRR: 0.01 ERR: 0.022
Report:
precision recall f1-score support
0.0 0.99 0.97 0.98 23616
1.0 0.97 0.99 0.98 23210
accuracy 0.98 46826
macro avg 0.98 0.98 0.98 46826
weighted avg 0.98 0.98 0.98 46826
----- Finished k-Nearest Neighbors on subject 1 -----
Starting processing for subject 2
------------------- Starting KNN --------------------
number of events: 86220, k = 3
> KNN Fit time: 0.008s
> KNN Predict time: 9.315s
> KNN Can process 3967.06 events / second
k-Nearest Neighbors subject 2 Validation details:
Accuracy: 0.975, Precision: 0.97, Recall: 0.981, F1: 0.975
[[17953 567]
[ 356 18076]]
FAR : 0.031 FRR: 0.019 ERR: 0.025
Report:
precision recall f1-score support
0.0 0.98 0.97 0.97 18520
1.0 0.97 0.98 0.98 18432
accuracy 0.98 36952
macro avg 0.98 0.98 0.98 36952
weighted avg 0.98 0.98 0.98 36952
----- Finished k-Nearest Neighbors on subject 2 -----
Starting processing for subject 3
------------------- Starting KNN --------------------
number of events: 95975, k = 3
> KNN Fit time: 0.008s
> KNN Predict time: 11.531s
> KNN Can process 3567.023 events / second
k-Nearest Neighbors subject 3 Validation details:
Accuracy: 0.978, Precision: 0.969, Recall: 0.988, F1: 0.978
[[20076 637]
[ 252 20168]]
FAR : 0.031 FRR: 0.012 ERR: 0.022
Report:
precision recall f1-score support
0.0 0.99 0.97 0.98 20713
1.0 0.97 0.99 0.98 20420
accuracy 0.98 41133
macro avg 0.98 0.98 0.98 41133
weighted avg 0.98 0.98 0.98 41133
----- Finished k-Nearest Neighbors on subject 3 -----
Starting processing for subject 4
------------------- Starting KNN --------------------
number of events: 91096, k = 3
> KNN Fit time: 0.01s
> KNN Predict time: 10.597s
> KNN Can process 3684.136 events / second
k-Nearest Neighbors subject 4 Validation details:
Accuracy: 0.97, Precision: 0.956, Recall: 0.986, F1: 0.971
[[18723 888]
[ 273 19158]]
FAR : 0.047 FRR: 0.014 ERR: 0.03
Report:
precision recall f1-score support
0.0 0.99 0.95 0.97 19611
1.0 0.96 0.99 0.97 19431
accuracy 0.97 39042
macro avg 0.97 0.97 0.97 39042
weighted avg 0.97 0.97 0.97 39042
----- Finished k-Nearest Neighbors on subject 4 -----
Starting processing for subject 5
------------------- Starting KNN --------------------
number of events: 148985, k = 3
> KNN Fit time: 0.012s
> KNN Predict time: 28.254s
> KNN Can process 2259.876 events / second
k-Nearest Neighbors subject 5 Validation details:
Accuracy: 0.98, Precision: 0.97, Recall: 0.99, F1: 0.98
[[31014 988]
[ 307 31542]]
FAR : 0.032 FRR: 0.009 ERR: 0.02
Report:
precision recall f1-score support
0.0 0.99 0.97 0.98 32002
1.0 0.97 0.99 0.98 31849
accuracy 0.98 63851
macro avg 0.98 0.98 0.98 63851
weighted avg 0.98 0.98 0.98 63851
----- Finished k-Nearest Neighbors on subject 5 -----
Starting processing for subject 6
------------------- Starting KNN --------------------
number of events: 106318, k = 3
> KNN Fit time: 0.01s
> KNN Predict time: 14.638s
> KNN Can process 3112.81 events / second
k-Nearest Neighbors subject 6 Validation details:
Accuracy: 0.972, Precision: 0.963, Recall: 0.981, F1: 0.972
[[22160 853]
[ 426 22127]]
FAR : 0.038 FRR: 0.019 ERR: 0.028
Report:
precision recall f1-score support
0.0 0.98 0.96 0.97 23013
1.0 0.96 0.98 0.97 22553
accuracy 0.97 45566
macro avg 0.97 0.97 0.97 45566
weighted avg 0.97 0.97 0.97 45566
----- Finished k-Nearest Neighbors on subject 6 -----
Starting processing for subject 7
------------------- Starting KNN --------------------
number of events: 74865, k = 3
> KNN Fit time: 0.006s
> KNN Predict time: 7.142s
> KNN Can process 4492.311 events / second
k-Nearest Neighbors subject 7 Validation details:
Accuracy: 0.966, Precision: 0.945, Recall: 0.988, F1: 0.966
[[15266 907]
[ 192 15720]]
FAR : 0.059 FRR: 0.012 ERR: 0.036
Report:
precision recall f1-score support
0.0 0.99 0.94 0.97 16173
1.0 0.95 0.99 0.97 15912
accuracy 0.97 32085
macro avg 0.97 0.97 0.97 32085
weighted avg 0.97 0.97 0.97 32085
----- Finished k-Nearest Neighbors on subject 7 -----
Starting processing for subject 8
------------------- Starting KNN --------------------
number of events: 114891, k = 3
> KNN Fit time: 0.009s
> KNN Predict time: 16.756s
> KNN Can process 2938.583 events / second
k-Nearest Neighbors subject 8 Validation details:
Accuracy: 0.978, Precision: 0.969, Recall: 0.988, F1: 0.978
[[24044 773]
[ 305 24117]]
FAR : 0.032 FRR: 0.012 ERR: 0.022
Report:
precision recall f1-score support
0.0 0.99 0.97 0.98 24817
1.0 0.97 0.99 0.98 24422
accuracy 0.98 49239
macro avg 0.98 0.98 0.98 49239
weighted avg 0.98 0.98 0.98 49239
----- Finished k-Nearest Neighbors on subject 8 -----
Starting processing for subject 9
------------------- Starting KNN --------------------
number of events: 105872, k = 3
> KNN Fit time: 0.01s
> KNN Predict time: 14.249s
> KNN Can process 3184.286 events / second
k-Nearest Neighbors subject 9 Validation details:
Accuracy: 0.975, Precision: 0.962, Recall: 0.989, F1: 0.975
[[22016 869]
[ 250 22239]]
FAR : 0.039 FRR: 0.011 ERR: 0.025
Report:
precision recall f1-score support
0.0 0.99 0.96 0.98 22885
1.0 0.96 0.99 0.98 22489
accuracy 0.98 45374
macro avg 0.98 0.98 0.98 45374
weighted avg 0.98 0.98 0.98 45374
----- Finished k-Nearest Neighbors on subject 9 -----
Starting processing for subject 10
------------------- Starting KNN --------------------
number of events: 108200, k = 3
> KNN Fit time: 0.008s
> KNN Predict time: 14.822s
> KNN Can process 3128.632 events / second
k-Nearest Neighbors subject 10 Validation details:
Accuracy: 0.974, Precision: 0.968, Recall: 0.981, F1: 0.974
[[22726 747]
[ 436 22463]]
FAR : 0.032 FRR: 0.019 ERR: 0.026
Report:
precision recall f1-score support
0.0 0.98 0.97 0.97 23473
1.0 0.97 0.98 0.97 22899
accuracy 0.97 46372
macro avg 0.97 0.97 0.97 46372
weighted avg 0.97 0.97 0.97 46372
---- Finished k-Nearest Neighbors on subject 10 -----
Starting processing for subject 11
------------------- Starting KNN --------------------
number of events: 111745, k = 3
> KNN Fit time: 0.011s
> KNN Predict time: 16.338s
> KNN Can process 2931.183 events / second
k-Nearest Neighbors subject 11 Validation details:
Accuracy: 0.978, Precision: 0.967, Recall: 0.99, F1: 0.978
[[23350 802]
[ 234 23505]]
FAR : 0.034 FRR: 0.01 ERR: 0.022
Report:
precision recall f1-score support
0.0 0.99 0.97 0.98 24152
1.0 0.97 0.99 0.98 23739
accuracy 0.98 47891
macro avg 0.98 0.98 0.98 47891
weighted avg 0.98 0.98 0.98 47891
---- Finished k-Nearest Neighbors on subject 11 -----
Starting processing for subject 12
------------------- Starting KNN --------------------
number of events: 108476, k = 3
> KNN Fit time: 0.01s
> KNN Predict time: 15.013s
> KNN Can process 3096.619 events / second
k-Nearest Neighbors subject 12 Validation details:
Accuracy: 0.976, Precision: 0.962, Recall: 0.991, F1: 0.976
[[22597 909]
[ 197 22787]]
FAR : 0.04 FRR: 0.008 ERR: 0.024
Report:
precision recall f1-score support
0.0 0.99 0.96 0.98 23506
1.0 0.96 0.99 0.98 22984
accuracy 0.98 46490
macro avg 0.98 0.98 0.98 46490
weighted avg 0.98 0.98 0.98 46490
---- Finished k-Nearest Neighbors on subject 12 -----
Starting processing for subject 13
------------------- Starting KNN --------------------
number of events: 82296, k = 3
> KNN Fit time: 0.007s
> KNN Predict time: 8.61s
> KNN Can process 4096.409 events / second
k-Nearest Neighbors subject 13 Validation details:
Accuracy: 0.973, Precision: 0.964, Recall: 0.983, F1: 0.973
[[16998 647]
[ 305 17320]]
FAR : 0.037 FRR: 0.017 ERR: 0.027
Report:
precision recall f1-score support
0.0 0.98 0.96 0.97 17645
1.0 0.96 0.98 0.97 17625
accuracy 0.97 35270
macro avg 0.97 0.97 0.97 35270
weighted avg 0.97 0.97 0.97 35270
---- Finished k-Nearest Neighbors on subject 13 -----
Starting processing for subject 14
------------------- Starting KNN --------------------
number of events: 119931, k = 3
> KNN Fit time: 0.012s
> KNN Predict time: 18.051s
> KNN Can process 2847.421 events / second
k-Nearest Neighbors subject 14 Validation details:
Accuracy: 0.977, Precision: 0.971, Recall: 0.984, F1: 0.977
[[25175 750]
[ 418 25056]]
FAR : 0.029 FRR: 0.016 ERR: 0.022
Report:
precision recall f1-score support
0.0 0.98 0.97 0.98 25925
1.0 0.97 0.98 0.98 25474
accuracy 0.98 51399
macro avg 0.98 0.98 0.98 51399
weighted avg 0.98 0.98 0.98 51399
---- Finished k-Nearest Neighbors on subject 14 -----
Starting processing for subject 0
> features selected:
Index(['ID', 'mean_x_speed', 'mean_y_speed', 'mean_speed', 'mean_x_acc',
'mean_y_acc', 'mean_acc', 'mean_jerk', 'mean_ang', 'mean_curve',
'mean_tan', 'std_x_speed', 'std_y_speed', 'std_speed', 'std_x_acc',
'std_y_acc', 'std_acc', 'std_ang', 'std_jerk', 'std_curve', 'std_tan',
'min_tan', 'min_x_speed', 'min_y_speed', 'min_speed', 'min_x_acc',
'min_y_acc', 'min_acc', 'min_ang', 'min_jerk', 'min_curve',
'max_x_speed', 'max_y_speed', 'max_speed', 'max_x_acc', 'max_y_acc',
'max_acc', 'max_ang', 'max_jerk', 'max_curve', 'max_tan', 'traj_length',
'numCritPoints', 'mean_speed_over_dist', 'std_speed_over_dist',
'min_speed_over_dist', 'max_speed_over_dist',
'mean_acceleration_over_dist', 'std_acceleration_over_dist',
'max_acceleration_over_dist', 'min_acceleration_over_dist',
'mean_smoothness', 'std_smoothness', 'min_smoothness', 'max_smoothness',
'area_under_curve'],
dtype='object')
-------------------- Starting DT --------------------
> Decision Tree Fit time: 6.396s
> Decision Tree Predict time: 0.01s
> Decision Tree Can process 4647132.749 events / second
Decision Tree subject 0 Validation details:
Accuracy: 0.965, Precision: 0.956, Recall: 0.974, F1: 0.965
[[21312 982]
[ 563 21446]]
FAR : 0.045 FRR: 0.025 ERR: 0.035
Report:
precision recall f1-score support
0.0 0.97 0.96 0.97 22294
1.0 0.96 0.97 0.97 22009
accuracy 0.97 44303
macro avg 0.97 0.97 0.97 44303
weighted avg 0.97 0.97 0.97 44303
-------- Finished Decision Tree on subject 0 --------
Starting processing for subject 1
-------------------- Starting DT --------------------
> Decision Tree Fit time: 6.086s
> Decision Tree Predict time: 0.009s
> Decision Tree Can process 5182670.443 events / second
Decision Tree subject 1 Validation details:
Accuracy: 0.962, Precision: 0.951, Recall: 0.974, F1: 0.962
[[22461 1155]
[ 613 22597]]
FAR : 0.05 FRR: 0.026 ERR: 0.038
Report:
precision recall f1-score support
0.0 0.97 0.95 0.96 23616
1.0 0.95 0.97 0.96 23210
accuracy 0.96 46826
macro avg 0.96 0.96 0.96 46826
weighted avg 0.96 0.96 0.96 46826
-------- Finished Decision Tree on subject 1 --------
Starting processing for subject 2
-------------------- Starting DT --------------------
> Decision Tree Fit time: 5.81s
> Decision Tree Predict time: 0.008s
> Decision Tree Can process 4584763.242 events / second
Decision Tree subject 2 Validation details:
Accuracy: 0.973, Precision: 0.967, Recall: 0.98, F1: 0.973
[[17897 623]
[ 362 18070]]
FAR : 0.034 FRR: 0.019 ERR: 0.027
Report:
precision recall f1-score support
0.0 0.98 0.97 0.97 18520
1.0 0.97 0.98 0.97 18432
accuracy 0.97 36952
macro avg 0.97 0.97 0.97 36952
weighted avg 0.97 0.97 0.97 36952
-------- Finished Decision Tree on subject 2 --------
Starting processing for subject 3
-------------------- Starting DT --------------------
> Decision Tree Fit time: 6.689s
> Decision Tree Predict time: 0.008s
> Decision Tree Can process 4919567.322 events / second
Decision Tree subject 3 Validation details:
Accuracy: 0.966, Precision: 0.957, Recall: 0.975, F1: 0.966
[[19828 885]
[ 508 19912]]
FAR : 0.044 FRR: 0.024 ERR: 0.034
Report:
precision recall f1-score support
0.0 0.98 0.96 0.97 20713
1.0 0.96 0.98 0.97 20420
accuracy 0.97 41133
macro avg 0.97 0.97 0.97 41133
weighted avg 0.97 0.97 0.97 41133
-------- Finished Decision Tree on subject 3 --------
Starting processing for subject 4
-------------------- Starting DT --------------------
> Decision Tree Fit time: 5.24s
> Decision Tree Predict time: 0.008s
> Decision Tree Can process 4743743.244 events / second
Decision Tree subject 4 Validation details:
Accuracy: 0.952, Precision: 0.938, Recall: 0.968, F1: 0.953
[[18362 1249]
[ 625 18806]]
FAR : 0.066 FRR: 0.031 ERR: 0.048
Report:
precision recall f1-score support
0.0 0.97 0.94 0.95 19611
1.0 0.94 0.97 0.95 19431
accuracy 0.95 39042
macro avg 0.95 0.95 0.95 39042
weighted avg 0.95 0.95 0.95 39042
-------- Finished Decision Tree on subject 4 --------
Starting processing for subject 5
-------------------- Starting DT --------------------
> Decision Tree Fit time: 11.036s
> Decision Tree Predict time: 0.014s
> Decision Tree Can process 4563059.152 events / second
Decision Tree subject 5 Validation details:
Accuracy: 0.974, Precision: 0.966, Recall: 0.982, F1: 0.974
[[30913 1089]
[ 560 31289]]
FAR : 0.035 FRR: 0.017 ERR: 0.026
Report:
precision recall f1-score support
0.0 0.98 0.97 0.97 32002
1.0 0.97 0.98 0.97 31849
accuracy 0.97 63851
macro avg 0.97 0.97 0.97 63851
weighted avg 0.97 0.97 0.97 63851
-------- Finished Decision Tree on subject 5 --------
Starting processing for subject 6
-------------------- Starting DT --------------------
> Decision Tree Fit time: 6.131s
> Decision Tree Predict time: 0.01s
> Decision Tree Can process 4547713.41 events / second
Decision Tree subject 6 Validation details:
Accuracy: 0.972, Precision: 0.964, Recall: 0.979, F1: 0.972
[[22186 827]
[ 464 22089]]
FAR : 0.037 FRR: 0.02 ERR: 0.028
Report:
precision recall f1-score support
0.0 0.98 0.96 0.97 23013
1.0 0.96 0.98 0.97 22553
accuracy 0.97 45566
macro avg 0.97 0.97 0.97 45566
weighted avg 0.97 0.97 0.97 45566
-------- Finished Decision Tree on subject 6 --------
Starting processing for subject 7
-------------------- Starting DT --------------------
> Decision Tree Fit time: 4.77s
> Decision Tree Predict time: 0.006s
> Decision Tree Can process 5345338.57 events / second
Decision Tree subject 7 Validation details:
Accuracy: 0.956, Precision: 0.941, Recall: 0.971, F1: 0.956
[[15209 964]
[ 454 15458]]
FAR : 0.062 FRR: 0.028 ERR: 0.045
Report:
precision recall f1-score support
0.0 0.97 0.94 0.96 16173
1.0 0.94 0.97 0.96 15912
accuracy 0.96 32085
macro avg 0.96 0.96 0.96 32085
weighted avg 0.96 0.96 0.96 32085
-------- Finished Decision Tree on subject 7 --------
Starting processing for subject 8
-------------------- Starting DT --------------------
> Decision Tree Fit time: 7.088s
> Decision Tree Predict time: 0.01s
> Decision Tree Can process 4927429.071 events / second
Decision Tree subject 8 Validation details:
Accuracy: 0.972, Precision: 0.963, Recall: 0.981, F1: 0.972
[[23905 912]
[ 455 23967]]
FAR : 0.037 FRR: 0.018 ERR: 0.027
Report:
precision recall f1-score support
0.0 0.98 0.96 0.97 24817
1.0 0.96 0.98 0.97 24422
accuracy 0.97 49239
macro avg 0.97 0.97 0.97 49239
weighted avg 0.97 0.97 0.97 49239
-------- Finished Decision Tree on subject 8 --------
Starting processing for subject 9
-------------------- Starting DT --------------------
> Decision Tree Fit time: 7.021s
> Decision Tree Predict time: 0.01s
> Decision Tree Can process 4537404.327 events / second
Decision Tree subject 9 Validation details:
Accuracy: 0.958, Precision: 0.943, Recall: 0.974, F1: 0.958
[[21560 1325]
[ 591 21898]]
FAR : 0.06 FRR: 0.025 ERR: 0.042
Report:
precision recall f1-score support
0.0 0.97 0.94 0.96 22885
1.0 0.94 0.97 0.96 22489
accuracy 0.96 45374
macro avg 0.96 0.96 0.96 45374
weighted avg 0.96 0.96 0.96 45374
-------- Finished Decision Tree on subject 9 --------
Starting processing for subject 10
-------------------- Starting DT --------------------
> Decision Tree Fit time: 7.798s
> Decision Tree Predict time: 0.01s
> Decision Tree Can process 4636872.767 events / second
Decision Tree subject 10 Validation details:
Accuracy: 0.969, Precision: 0.96, Recall: 0.978, F1: 0.969
[[22539 934]
[ 505 22394]]
FAR : 0.041 FRR: 0.022 ERR: 0.032
Report:
precision recall f1-score support
0.0 0.98 0.96 0.97 23473
1.0 0.96 0.98 0.97 22899
accuracy 0.97 46372
macro avg 0.97 0.97 0.97 46372
weighted avg 0.97 0.97 0.97 46372
------- Finished Decision Tree on subject 10 --------
Starting processing for subject 11
-------------------- Starting DT --------------------
> Decision Tree Fit time: 7.358s
> Decision Tree Predict time: 0.01s
> Decision Tree Can process 4704973.013 events / second
Decision Tree subject 11 Validation details:
Accuracy: 0.961, Precision: 0.949, Recall: 0.975, F1: 0.962
[[22897 1255]
[ 590 23149]]
FAR : 0.053 FRR: 0.024 ERR: 0.038
Report:
precision recall f1-score support
0.0 0.97 0.95 0.96 24152
1.0 0.95 0.98 0.96 23739
accuracy 0.96 47891
macro avg 0.96 0.96 0.96 47891
weighted avg 0.96 0.96 0.96 47891
------- Finished Decision Tree on subject 11 --------
Starting processing for subject 12
-------------------- Starting DT --------------------
> Decision Tree Fit time: 7.285s
> Decision Tree Predict time: 0.01s
> Decision Tree Can process 4645349.556 events / second
Decision Tree subject 12 Validation details:
Accuracy: 0.967, Precision: 0.956, Recall: 0.979, F1: 0.967
[[22471 1035]
[ 481 22503]]
FAR : 0.045 FRR: 0.02 ERR: 0.032
Report:
precision recall f1-score support
0.0 0.98 0.96 0.97 23506
1.0 0.96 0.98 0.97 22984
accuracy 0.97 46490
macro avg 0.97 0.97 0.97 46490
weighted avg 0.97 0.97 0.97 46490
------- Finished Decision Tree on subject 12 --------
Starting processing for subject 13
-------------------- Starting DT --------------------
> Decision Tree Fit time: 5.133s
> Decision Tree Predict time: 0.008s
> Decision Tree Can process 4402377.826 events / second
Decision Tree subject 13 Validation details:
Accuracy: 0.974, Precision: 0.969, Recall: 0.98, F1: 0.975
[[17095 550]
[ 350 17275]]
FAR : 0.032 FRR: 0.02 ERR: 0.026
Report:
precision recall f1-score support
0.0 0.98 0.97 0.97 17645
1.0 0.97 0.98 0.97 17625
accuracy 0.97 35270
macro avg 0.97 0.97 0.97 35270
weighted avg 0.97 0.97 0.97 35270
------- Finished Decision Tree on subject 13 --------
Starting processing for subject 14
-------------------- Starting DT --------------------
> Decision Tree Fit time: 8.463s
> Decision Tree Predict time: 0.01s
> Decision Tree Can process 5139904.902 events / second
Decision Tree subject 14 Validation details:
Accuracy: 0.971, Precision: 0.964, Recall: 0.979, F1: 0.971
[[25003 922]
[ 545 24929]]
FAR : 0.036 FRR: 0.021 ERR: 0.028
Report:
precision recall f1-score support
0.0 0.98 0.96 0.97 25925
1.0 0.96 0.98 0.97 25474
accuracy 0.97 51399
macro avg 0.97 0.97 0.97 51399
weighted avg 0.97 0.97 0.97 51399
------- Finished Decision Tree on subject 14 --------
Starting processing for subject 1
Starting processing for subject 4
Starting processing for subject 0
> features selected:
Index(['ID', 'mean_x_speed', 'mean_y_speed', 'mean_speed', 'mean_x_acc',
'mean_y_acc', 'mean_acc', 'mean_jerk', 'mean_ang', 'mean_curve',
'mean_tan', 'std_x_speed', 'std_y_speed', 'std_speed', 'std_x_acc',
'std_y_acc', 'std_acc', 'std_ang', 'std_jerk', 'std_curve', 'std_tan',
'min_tan', 'min_x_speed', 'min_y_speed', 'min_speed', 'min_x_acc',
'min_y_acc', 'min_acc', 'min_ang', 'min_jerk', 'min_curve',
'max_x_speed', 'max_y_speed', 'max_speed', 'max_x_acc', 'max_y_acc',
'max_acc', 'max_ang', 'max_jerk', 'max_curve', 'max_tan', 'traj_length',
'numCritPoints', 'mean_speed_over_dist', 'std_speed_over_dist',
'min_speed_over_dist', 'max_speed_over_dist',
'mean_acceleration_over_dist', 'std_acceleration_over_dist',
'max_acceleration_over_dist', 'min_acceleration_over_dist',
'mean_smoothness', 'std_smoothness', 'min_smoothness', 'max_smoothness',
'area_under_curve'],
dtype='object')
Starting processing for subject 6
Starting processing for subject 7
Starting processing for subject 2
Starting processing for subject 3
Starting processing for subject 5
------------------- Starting SVC --------------------
Starting processing for subject 9
> Feature Scaling time: 0.238s
Starting processing for subject 8
------------------- Starting SVC --------------------
------------------- Starting SVC --------------------
------------------- Starting SVC --------------------
------------------- Starting SVC --------------------
> Feature Scaling time: 0.191s
> Feature Scaling time: 0.243s
------------------- Starting SVC --------------------
> Feature Scaling time: 0.155s
------------------- Starting SVC --------------------
> Feature Scaling time: 0.238s
------------------- Starting SVC --------------------
> Feature Scaling time: 0.192s
> Feature Scaling time: 0.179s
> Feature Scaling time: 0.167s
------------------- Starting SVC --------------------
------------------- Starting SVC --------------------
> Feature Scaling time: 0.159s
> Feature Scaling time: 0.214s
> SVC Fit time: 1840.246s
> SVC Fit time: 1910.548s
> SVC Predict time: 85.09s
> SVC Can process 434.267 events / second
SVC subject 2 Validation details:
Accuracy: 0.968, Precision: 0.949, Recall: 0.988, F1: 0.968
[[17547 973]
[ 223 18209]]
FAR : 0.055 FRR: 0.012 ERR: 0.034
Report:
precision recall f1-score support
0.0 0.99 0.95 0.97 18520
1.0 0.95 0.99 0.97 18432
accuracy 0.97 36952
macro avg 0.97 0.97 0.97 36952
weighted avg 0.97 0.97 0.97 36952
------------- Finished SVC on subject 2 -------------
Starting processing for subject 10
------------------- Starting SVC --------------------
> Feature Scaling time: 0.182s
> SVC Predict time: 102.682s
> SVC Can process 312.468 events / second
SVC subject 7 Validation details:
Accuracy: 0.943, Precision: 0.905, Recall: 0.988, F1: 0.945
[[14522 1651]
[ 185 15727]]
FAR : 0.112 FRR: 0.011 ERR: 0.062
Report:
precision recall f1-score support
0.0 0.99 0.90 0.94 16173
1.0 0.90 0.99 0.94 15912
accuracy 0.94 32085
macro avg 0.95 0.94 0.94 32085
weighted avg 0.95 0.94 0.94 32085
------------- Finished SVC on subject 7 -------------
Starting processing for subject 11
------------------- Starting SVC --------------------
> Feature Scaling time: 0.188s
> SVC Fit time: 2954.971s
> SVC Fit time: 2966.835s
> SVC Predict time: 144.549s
> SVC Can process 270.095 events / second
SVC subject 4 Validation details:
Accuracy: 0.94, Precision: 0.902, Recall: 0.987, F1: 0.943
[[17538 2073]
[ 260 19171]]
FAR : 0.116 FRR: 0.012 ERR: 0.064
Report:
precision recall f1-score support
0.0 0.99 0.89 0.94 19611
1.0 0.90 0.99 0.94 19431
accuracy 0.94 39042
macro avg 0.94 0.94 0.94 39042
weighted avg 0.94 0.94 0.94 39042
------------- Finished SVC on subject 4 -------------
> SVC Predict time: 133.379s
> SVC Can process 332.159 events / second
SVC subject 0 Validation details:
Accuracy: 0.962, Precision: 0.94, Recall: 0.987, F1: 0.963
[[20911 1383]
[ 289 21720]]
FAR : 0.065 FRR: 0.013 ERR: 0.039
Report:
precision recall f1-score support
0.0 0.99 0.94 0.96 22294
1.0 0.94 0.99 0.96 22009
accuracy 0.96 44303
macro avg 0.96 0.96 0.96 44303
weighted avg 0.96 0.96 0.96 44303
------------- Finished SVC on subject 0 -------------
Starting processing for subject 12
------------------- Starting SVC --------------------
> Feature Scaling time: 0.166s
> SVC Fit time: 3116.817s
Starting processing for subject 13
------------------- Starting SVC --------------------
> Feature Scaling time: 0.134s
> SVC Fit time: 3221.059s
> SVC Predict time: 146.164s
> SVC Can process 311.747 events / second
SVC subject 6 Validation details:
Accuracy: 0.963, Precision: 0.938, Recall: 0.991, F1: 0.964
[[21528 1485]
[ 207 22346]]
FAR : 0.068 FRR: 0.009 ERR: 0.038
Report:
precision recall f1-score support
0.0 0.99 0.94 0.96 23013
1.0 0.94 0.99 0.96 22553
accuracy 0.96 45566
macro avg 0.96 0.96 0.96 45566
weighted avg 0.96 0.96 0.96 45566
------------- Finished SVC on subject 6 -------------
Starting processing for subject 14
------------------- Starting SVC --------------------
> Feature Scaling time: 0.133s
> SVC Predict time: 155.433s
> SVC Can process 301.262 events / second
SVC subject 1 Validation details:
Accuracy: 0.961, Precision: 0.937, Recall: 0.988, F1: 0.962
[[22067 1549]
[ 283 22927]]
FAR : 0.069 FRR: 0.012 ERR: 0.04
Report:
precision recall f1-score support
0.0 0.99 0.93 0.96 23616
1.0 0.94 0.99 0.96 23210
accuracy 0.96 46826
macro avg 0.96 0.96 0.96 46826
weighted avg 0.96 0.96 0.96 46826
------------- Finished SVC on subject 1 -------------
> SVC Fit time: 3531.324s
> SVC Predict time: 151.123s
> SVC Can process 272.182 events / second
SVC subject 3 Validation details:
Accuracy: 0.952, Precision: 0.93, Recall: 0.976, F1: 0.953
[[19217 1496]
[ 490 19930]]
FAR : 0.076 FRR: 0.023 ERR: 0.05
Report:
precision recall f1-score support
0.0 0.98 0.93 0.95 20713
1.0 0.93 0.98 0.95 20420
accuracy 0.95 41133
macro avg 0.95 0.95 0.95 41133
weighted avg 0.95 0.95 0.95 41133
------------- Finished SVC on subject 3 -------------
> SVC Fit time: 3740.688s
> SVC Predict time: 147.896s
> SVC Can process 332.93 events / second
SVC subject 8 Validation details:
Accuracy: 0.966, Precision: 0.947, Recall: 0.986, F1: 0.966
[[23481 1336]
[ 354 24068]]
FAR : 0.056 FRR: 0.014 ERR: 0.035
Report:
precision recall f1-score support
0.0 0.99 0.95 0.97 24817
1.0 0.95 0.99 0.97 24422
accuracy 0.97 49239
macro avg 0.97 0.97 0.97 49239
weighted avg 0.97 0.97 0.97 49239
------------- Finished SVC on subject 8 -------------
> SVC Fit time: 1208.269s
> SVC Predict time: 40.472s
> SVC Can process 871.456 events / second
SVC subject 13 Validation details:
Accuracy: 0.977, Precision: 0.963, Recall: 0.993, F1: 0.978
[[16980 665]
[ 132 17493]]
FAR : 0.039 FRR: 0.007 ERR: 0.023
Report:
precision recall f1-score support
0.0 0.99 0.96 0.98 17645
1.0 0.96 0.99 0.98 17625
accuracy 0.98 35270
macro avg 0.98 0.98 0.98 35270
weighted avg 0.98 0.98 0.98 35270
------------ Finished SVC on subject 13 -------------
> SVC Fit time: 4657.845s
> SVC Predict time: 141.2s
> SVC Can process 321.346 events / second
SVC subject 9 Validation details:
Accuracy: 0.932, Precision: 0.895, Recall: 0.977, F1: 0.934
[[20309 2576]
[ 515 21974]]
FAR : 0.124 FRR: 0.021 ERR: 0.072
Report:
precision recall f1-score support
0.0 0.98 0.89 0.93 22885
1.0 0.90 0.98 0.93 22489
accuracy 0.93 45374
macro avg 0.94 0.93 0.93 45374
weighted avg 0.94 0.93 0.93 45374
------------- Finished SVC on subject 9 -------------
> SVC Fit time: 3503.107s
> SVC Fit time: 2422.128s
> SVC Predict time: 99.985s
> SVC Can process 463.792 events / second
SVC subject 10 Validation details:
Accuracy: 0.949, Precision: 0.916, Recall: 0.988, F1: 0.951
[[21395 2078]
[ 274 22625]]
FAR : 0.096 FRR: 0.011 ERR: 0.054
Report:
precision recall f1-score support
0.0 0.99 0.91 0.95 23473
1.0 0.92 0.99 0.95 22899
accuracy 0.95 46372
macro avg 0.95 0.95 0.95 46372
weighted avg 0.95 0.95 0.95 46372
------------ Finished SVC on subject 10 -------------
> SVC Predict time: 72.79s
> SVC Can process 638.683 events / second