-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpreprocess.py
166 lines (141 loc) · 6.56 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import pandas as pd
import os
from datetime import datetime, timedelta
import numpy as np
data_path = './data/preprocessed'
# Utils工具类
def convertCode(code) -> str:
"""
将股票代码转换为标准6位
:param code: 股票代码
:return: 6位标准代码
"""
return "{:06d}".format(int(code))
def generateDate(start, end) -> list:
start = datetime.strptime(start, "%Y-%m-%d")
end = datetime.strptime(end, "%Y-%m-%d")
current = start
res = []
while current < end:
res.append(current.strftime("%Y-%m"))
current = current.replace(day=28) + timedelta(days=4)
return res
# IO 输入输出
def excel2Df(directory: str, **kwargs) -> pd.DataFrame:
"""
合并excel表并且输出dataframe
:rtype: pd.DataFrame
:param directory: xlsx path
:return: None
"""
# 储存dataframe的临时变量
df_ls = []
# 遍历文件夹下的所有excel
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith(".xlsx"):
df_ls.append(pd.read_excel(os.path.join(root, file), **kwargs))
# 合并输出
return pd.DataFrame().append(df_ls, sort=False)
# Filters 过滤器
def dateFilter(df: pd.DataFrame, date_col: str, date_format: str = None) -> pd.DataFrame:
"""
过滤非6,12月的数据
:param df: 数据表
:param date_col: 表示时间的列名
:param date_format: 日期格式
:return: 过滤后的dataframe
"""
if date_format is None:
# 默认日期格式
date_format = "%Y-%m-%d"
return df[df[date_col].apply(lambda x: datetime.strptime(x, date_format).month in [6, 12])]
def MainBoardFilter(df: pd.DataFrame, code_col: str) -> pd.DataFrame:
"""
过滤出A股数据
:param df:数据表
:param code_col:股票代码列名
:return: 过滤后的数据
"""
return df[np.isin(df[code_col].apply(convertCode).str[:3], ['000', '600', '601', '603', '605'])]
def FinanceFrames():
# 合并&预处理财务报表数据
balanceSheet = excel2Df("./data/raw/Balance sheet", index_col=0)
IncomeSheet = excel2Df("./data/raw/Income statement")
balanceSheet = balanceSheet[balanceSheet['Typrep'] == 'A'].sort_values(by=['Stkcd', 'Accper'])
IncomeSheet = IncomeSheet[IncomeSheet['Typrep'] == 'A'].sort_values(by=['Stkcd', 'Accper'])
# 日期过滤&板块过滤
balanceSheet = MainBoardFilter(dateFilter(balanceSheet, 'Accper'), 'Stkcd').drop(['Typrep'], axis=1)
IncomeSheet = MainBoardFilter(dateFilter(IncomeSheet, 'Accper'), 'Stkcd').drop(['Typrep'], axis=1)
pd.merge(balanceSheet, IncomeSheet, on=['Stkcd', 'Accper'], how='outer'). \
to_csv("./data/preprocessed/finance.csv", index=False)
def StockReturnFrames():
# 合并&预处理
# 市场收益率&无风险收益率
mktmnth = excel2Df("./data/raw/mktmnth")
mktmnth = mktmnth[mktmnth['Markettype'] == 5][['Trdmnt', 'Cmretwdos']]
rf = excel2Df("./data/raw/rf")[['Clsdt', 'Nrrmtdt']]
rf['month'] = rf['Clsdt'].str[:7]
rf = rf.groupby('month').apply(lambda x: x.iloc[np.argmax(x['Clsdt'].values)])
rf['Nrrmtdt'] = rf['Nrrmtdt'] / 100
marketRf = pd.merge(mktmnth.rename(columns={"Trdmnt": "date"}),
rf[['month', 'Nrrmtdt']].rename(columns={"month": "date"}),
on='date', how='outer').sort_values(by=['date'])
# 个股收益率
stockmnth = excel2Df("./data/raw/stockmnth")[['Stkcd', 'Trdmnt', 'Msmvosd', 'Mretwd', 'Markettype']]
stockmnth = stockmnth[np.isin(stockmnth['Markettype'], [1, 4])]. \
rename(columns={'Trdmnt': 'date'}).drop('Markettype', axis=1)
pd.merge(stockmnth, marketRf, on='date').sort_values(by=['Stkcd', 'date']).dropna(). \
to_csv("data/preprocessed/stockReturns.csv", index=None)
def extraFactors():
finance = pd.read_csv(os.path.join(data_path, 'finance.csv')).rename(columns={'Accper': "date"})
finance['date'] = finance['date'].str[:7]
stockReturns = pd.read_csv(os.path.join(data_path, 'stockReturns.csv'))
df = pd.merge(stockReturns, finance, on=['Stkcd', 'date'])
# Size
Size = stockReturns.groupby(['Stkcd']).apply(lambda x: pd.DataFrame(
{
'phase': [2016, 2017],
'Size': [
x[x['date'] == '2016-06']['Msmvosd'].iat[0] if len(x[x['date'] == '2016-06']) > 0 else np.NAN,
x[x['date'] == '2017-06']['Msmvosd'].iat[0] if len(x[x['date'] == '2017-06']) > 0 else np.NAN
]
}).dropna()).reset_index().drop(['level_1'], axis=1)
# B/M ratio
BM = df.groupby(['Stkcd']).apply(lambda x: pd.DataFrame({
'phase': [2016, 2017],
'BM': [
x[x['date'] == '2015-12']['total_equity'].iat[0] / x[x['date'] == '2015-12']['Msmvosd'].iat[0]
if len(x[x['date'] == '2015-12']) > 0 else np.NAN,
x[x['date'] == '2016-12']['total_equity'].iat[0] / x[x['date'] == '2016-12']['Msmvosd'].iat[0]
if len(x[x['date'] == '2016-12']) > 0 else np.NAN
]
}).dropna()).reset_index().drop(['level_1'], axis=1)
# Inv
Inv = finance.groupby(['Stkcd']).apply(lambda x: pd.DataFrame({
'phase': [2016, 2017],
'Inv': [
(x[x['date'] == '2015-12']['total_assets'].iat[0] - x[x['date'] == '2014-12']['total_assets'].iat[0])
/ x[x['date'] == '2014-12']['total_assets'].iat[0]
if len(x[x['date'] == '2015-12']) > 0 and len(x[x['date'] == '2014-12']) > 0 else np.NAN,
(x[x['date'] == '2016-12']['total_assets'].iat[0] - x[x['date'] == '2015-12']['total_assets'].iat[0])
/ x[x['date'] == '2015-12']['total_assets'].iat[0]
if len(x[x['date'] == '2016-12']) > 0 and len(x[x['date'] == '2015-12']) > 0 else np.NAN
]
}).dropna()).reset_index().drop(['level_1'], axis=1)
# OP
OP = df.groupby(['Stkcd']).apply(lambda x: pd.DataFrame({
'phase': [2016, 2017],
'OP': [
x[x['date'] == '2015-12']['operating profit'].iat[0] / x[x['date'] == '2015-12']['total_equity'].iat[0]
if len(x[x['date'] == '2015-12']) > 0 else np.NAN,
x[x['date'] == '2016-12']['operating profit'].iat[0] / x[x['date'] == '2016-12']['total_equity'].iat[0]
if len(x[x['date'] == '2016-12']) > 0 and len(x[x['date'] == '2016-12']) > 0 else np.NAN
]
}).dropna()).reset_index().drop(['level_1'], axis=1)
pd.merge(pd.merge(BM, Inv), pd.merge(OP, Size), on=['Stkcd', 'phase']). \
to_csv(os.path.join(data_path, "SortCols.csv"), index=False)
if __name__ == '__main__':
FinanceFrames()
StockReturnFrames()
extraFactors()