This tutorial shows how to use stoppers.
Annotation costs a lot of money. Usually, we will have a budget. If we run out of budget, the active learning cycle will stop.
Below is a demo to show how to use BudgetStopper
.
from flair.embeddings import WordEmbeddings
from seqal.active_learner import ActiveLearner
from seqal.datasets import ColumnCorpus, ColumnDataset
from seqal.samplers import LeastConfidenceSampler
from seqal.utils import load_plain_text, add_tags, count_tokens
from seqal.stoppers import BudgetStopper
# 1~7
# Stopper setup
stopper = BudgetStopper(goal=200, unit_price=0.02)
# 8. iteration
for i in range(iterations):
# 9. query unlabeled sentences
queried_samples, unlabeled_sentences = learner.query(
unlabeled_sentences, query_number, token_based=token_based, research_mode=False
)
# 10. annotate data
annotated_data = human_annotate(queried_samples)
# 11. retrain model with newly added queried_samples
queried_samples = add_tags(annotated_data)
learner.teach(queried_samples, dir_path=f"output/retrain_{i}")
# 12. stop iteration early
unit_count = count_tokens(corpus.train.sentences)
if stopper.stop(unit_count):
break
The BudgetStopper(goal=200, unit_price=0.02)
initialize the budget stopper. The goal
means how much money we have, here we say 200$. The unit_price
means annotation cost for each unit, here we say 0.02$/unit. A unit could be a sentence or a token. Usually, it is a token.
Another motivation to stop active learning cycle is model's performance is beyond our goal.
from flair.embeddings import WordEmbeddings
from seqal.active_learner import ActiveLearner
from seqal.datasets import ColumnCorpus, ColumnDataset
from seqal.samplers import LeastConfidenceSampler
from seqal.utils import load_plain_text, add_tags, count_tokens
from seqal.stoppers import MetricStopper
# 1~6 steps can be found in Introduction
# 7. query setup
query_percent = 0.02
token_based = True
total_tokens = count_tokens(corpus.train.sentences) + count_tokens(data_pool.sentences)
query_number = tokens_each_iteration = int(total_tokens * query_percent)
# performance recorder setup
performance_recorder = PerformanceRecorder()
accumulate_data = 0
# Stopper setup
stopper = MetricStopper(goal=0.9)
# 8. iteration
for i in range(iterations):
# 9. query unlabeled sentences
queried_samples, unlabeled_sentences = learner.query(
unlabeled_sentences, query_number, token_based=token_based, research_mode=False
)
# 10. annotate data
annotated_data = human_annotate(queried_samples)
# 11. retrain model with newly added queried_samples
queried_samples = add_tags(annotated_data)
learner.teach(queried_samples, dir_path=f"output/retrain_{i}")
# 12. stop iteration early
result = learner.trained_tagger.evaluate(corpus.test, gold_label_type="ner")
accumulate_data += query_percent
performance_recorder.get_result(accumulate_data, result)
iteration_performance = performance_recorder.performance_list[i]
if stopper.stop(iteration_performance.micro_f1):
break
The MetricStopper(goal=0.9)
initialize the budget stopper. The goal
means the f1 score we want to achieve.
The learner.trained_tagger.evaluate(corpus.test, gold_label_type="ner")
evaluate on test dataset and return the evaluation result.
We use performance_recorder
to parse the evaluation result.
The stopper.stop(iteration_performance.micro_f1)
compare the goal and the evaluation result on micro f1 score. We can also compare other metrics like macro f1, accuracy, etc.