forked from twobitcoder101/Flat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFlatRay.cs
93 lines (72 loc) · 3.48 KB
/
FlatRay.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
using System;
using Microsoft.Xna.Framework;
namespace Flat
{
public readonly struct FlatRay
{
public readonly Vector2 Position;
public readonly Vector2 Direction;
public FlatRay(Vector2 position, Vector2 direction)
{
this.Position = position;
this.Direction = direction;
}
public bool Intersects(in FlatCircle circle, out float distance)
{
distance = 0f;
// TODO: what to do if ray starts inside the circle?
if(circle.Intersects(this.Position))
{
return false;
}
// Ensure the ray is pointing "towards" the circle.
if(FlatMath.Dot(this.Direction, circle.Center - this.Position) < 0)
{
return false;
}
// "a", "b", and "c" are 3 sides of a triangle.
// "c": is the hypotonus and extends from the ray.position to the circle.center.
// "b": is the projection of the hypotonus on the ray direction.
// "a": is the opposite side of the angle formed by "c" and "b".
float c = FlatMath.Distance(this.Position, circle.Center);
float b = FlatMath.Dot(circle.Center - this.Position, this.Direction);
float a = MathF.Sqrt(c * c - b * b);
// If "a" is bigger than the radius then no intersection. Ray will pass off to the side of the circle.
if(a >= circle.Radius)
{
return false;
}
// Now calculate the final side of the triangle adjacent to the triangle above. This will allow us to find the distance to intersection.
float d = MathF.Sqrt(circle.Radius * circle.Radius - a * a);
distance = b - d;
return true;
}
public bool Intersects(FlatEllipse ellipse, out float distance)
{
distance = 0f;
// Scale to convert the ellipse to a unit circle.
Vector2 scale = new Vector2(1f / ellipse.Radius.X, 1f / ellipse.Radius.Y);
// Adjust the ray to be relative to the new unit circle.
FlatRay ray = new FlatRay((this.Position - ellipse.Center) * scale, Vector2.Normalize(this.Direction * scale));
// Unit circle for ray intersection testing.
FlatCircle circle = new FlatCircle(Vector2.Zero, 1f);
// Determine intersection with the unit circle.
bool intersection = ray.Intersects(circle, out distance);
// If an intersection has occured then we need to scale and translate the answer back into ellipse world space.
if(intersection)
{
// Find the intersection point of the unit circle.
Vector2 ip = ray.Position + ray.Direction * distance;
// Convert the intersection point back into ellipse coordinate systtem:
// 1) Scale the ip by the inverse of the scale used to move into unit circle space.
// 2) Translate back to the ellipse space.
ip = ip / scale + ellipse.Center;
// Find the distance to intersection.
float dx = ip.X - this.Position.X;
float dy = ip.Y - this.Position.Y;
distance = MathF.Sqrt(dx * dx + dy * dy);
}
return intersection;
}
}
}