- Installation
- Getting Started
- Building Type-Safe SQL
- Creating a Table
- Inserting Rows
- Selecting Rows
- Updating Rows
- Deleting Rows
- Transactions and Savepoints
- Altering the Schema
- Custom Types
- Other Operators
- Core SQLite Functions
- Aggregate SQLite Functions
- Custom SQL Functions
- Custom Collations
- Full-text Search
- Executing Arbitrary SQL
- Logging
Note: SQLite.swift requires Swift 3 (and Xcode 8) or greater.
Carthage is a simple, decentralized dependency manager for Cocoa. To install SQLite.swift with Carthage:
-
Make sure Carthage is installed.
-
Update your Cartfile to include the following:
github "stephencelis/SQLite.swift" ~> 0.11.3
-
Run
carthage update
and add the appropriate framework.
CocoaPods is a dependency manager for Cocoa projects. To install SQLite.swift with CocoaPods:
-
Verify that your copy of Xcode is installed and active in the default location (
/Applications/Xcode.app
).sudo xcode-select --switch /Applications/Xcode.app
-
Make sure CocoaPods is installed (SQLite.swift requires version 1.0.0 or greater).
# Using the default Ruby install will require you to use sudo when # installing and updating gems. [sudo] gem install cocoapods
-
Update your Podfile to include the following:
use_frameworks! target 'YourAppTargetName' do pod 'SQLite.swift', '~> 0.11.3' end
-
Run
pod install --repo-update
.
If you want to use a more recent version of SQLite than what is provided with the OS you can require the standalone
subspec:
target 'YourAppTargetName' do
pod 'SQLite.swift/standalone', '~> 0.11.3'
end
By default this will use the most recent version of SQLite without any extras. If you want you can further customize this by adding another dependency to sqlite3 or one of its subspecs:
target 'YourAppTargetName' do
pod 'SQLite.swift/standalone', '~> 0.11.3'
pod 'sqlite3/fts5', '= 3.15.0' # SQLite 3.15.0 with FTS5 enabled
end
See the sqlite3 podspec for more details.
If you want to use SQLCipher with SQLite.swift you can require the SQLCipher
subspec in your Podfile:
target 'YourAppTargetName' do
pod 'SQLite.swift/SQLCipher', '~> 0.11.3'
end
This will automatically add a dependency to the SQLCipher pod as well as extend
Connection
with methods to change the database key:
import SQLite
let db = try Connection("path/to/db.sqlite3")
try db.key("secret")
try db.rekey("another secret")
The Swift Package Manager is a tool for managing the distribution of Swift code. It’s integrated with the Swift build system to automate the process of downloading, compiling, and linking dependencies.
It is the recommended approach for using SQLite.swift in OSX CLI applications.
- Add the following to your
Package.swift
file:
dependencies: [
.Package(url: "https://github.com/stephencelis/SQLite.swift.git", majorVersion: 0, minor: 11)
]
- Build your project:
$ swift build -Xlinker -lsqlite3
To install SQLite.swift as an Xcode sub-project:
-
Drag the SQLite.xcodeproj file into your own project. (Submodule, clone, or download the project first.)
-
In your target’s General tab, click the + button under Linked Frameworks and Libraries.
-
Select the appropriate SQLite.framework for your platform.
-
Add.
You should now be able to import SQLite
from any of your target’s source files and begin using SQLite.swift.
Some additional steps are required to install the application on an actual device:
-
In the General tab, click the + button under Embedded Binaries.
-
Select the appropriate SQLite.framework for your platform.
-
Add.
To use SQLite.swift classes or structures in your target’s source file, first import the SQLite
module.
import SQLite
Database connections are established using the Connection
class. A connection is initialized with a path to a database. SQLite will attempt to create the database file if it does not already exist.
let db = try Connection("path/to/db.sqlite3")
On iOS, you can create a writable database in your app’s Documents directory.
let path = NSSearchPathForDirectoriesInDomains(
.documentDirectory, .userDomainMask, true
).first!
let db = try Connection("\(path)/db.sqlite3")
On OS X, you can use your app’s Application Support directory:
var path = NSSearchPathForDirectoriesInDomains(
.applicationSupportDirectory, .userDomainMask, true
).first! + Bundle.main.bundleIdentifier!
// create parent directory iff it doesn’t exist
try FileManager.default.createDirectoryAtPath(
path, withIntermediateDirectories: true, attributes: nil
)
let db = try Connection("\(path)/db.sqlite3")
If you bundle a database with your app (i.e., you’ve copied a database file into your Xcode project and added it to your application target), you can establish a read-only connection to it.
let path = Bundle.main.pathForResource("db", ofType: "sqlite3")!
let db = try Connection(path, readonly: true)
Note: Signed applications cannot modify their bundle resources. If you bundle a database file with your app for the purpose of bootstrapping, copy it to a writable location before establishing a connection (see Read-Write Databases, above, for typical, writable locations).
See these two Stack Overflow questions for more information about iOS apps with SQLite databases: 1, 2. We welcome sample code to show how to successfully copy and use a bundled "seed" database for writing in an app.
If you omit the path, SQLite.swift will provision an in-memory database.
let db = try Connection() // equivalent to `Connection(.inMemory)`
To create a temporary, disk-backed database, pass an empty file name.
let db = try Connection(.temporary)
In-memory databases are automatically deleted when the database connection is closed.
Every Connection comes equipped with its own serial queue for statement execution and can be safely accessed across threads. Threads that open transactions and savepoints will block other threads from executing statements while the transaction is open.
If you maintain multiple connections for a single database, consider setting a timeout (in seconds) and/or a busy handler:
db.busyTimeout = 5
db.busyHandler({ tries in
if tries >= 3 {
return false
}
return true
})
Note: The default timeout is 0, so if you see
database is locked
errors, you may be trying to access the same database simultaneously from multiple connections.
SQLite.swift comes with a typed expression layer that directly maps Swift types to their SQLite counterparts.
Swift Type | SQLite Type |
---|---|
Int64 * |
INTEGER |
Double |
REAL |
String |
TEXT |
nil |
NULL |
SQLite.Blob † |
BLOB |
*While
Int64
is the basic, raw type (to preserve 64-bit integers on 32-bit platforms),Int
andBool
work transparently.†SQLite.swift defines its own
Blob
structure, which safely wraps the underlying bytes.See Custom Types for more information about extending other classes and structures to work with SQLite.swift.
See Executing Arbitrary SQL to forego the typed layer and execute raw SQL, instead.
These expressions (in the form of the structure, Expression
) build on one another and, with a query (QueryType
), can create and execute SQL statements.
Expressions are generic structures associated with a type (built-in or custom), raw SQL, and (optionally) values to bind to that SQL. Typically, you will only explicitly create expressions to describe your columns, and typically only once per column.
let id = Expression<Int64>("id")
let email = Expression<String>("email")
let balance = Expression<Double>("balance")
let verified = Expression<Bool>("verified")
Use optional generics for expressions that can evaluate to NULL
.
let name = Expression<String?>("name")
Note: The default
Expression
initializer is for quoted identifiers (i.e., column names). To build a literal SQL expression, useinit(literal:)
.
Expressions can be combined with other expressions and types using filter operators and functions (as well as other non-filter operators and functions). These building blocks can create complex SQLite statements.
Queries are structures that reference a database and table name, and can be used to build a variety of statements using expressions. We can create a query by initializing a Table
, View
, or VirtualTable
.
let users = Table("users")
Assuming the table exists, we can immediately insert, select, update, and delete rows.
We can build CREATE TABLE
statements by calling the create
function on a Table
. The following is a basic example of SQLite.swift code (using the expressions and query above) and the corresponding SQL it generates.
try db.run(users.create { t in // CREATE TABLE "users" (
t.column(id, primaryKey: true) // "id" INTEGER PRIMARY KEY NOT NULL,
t.column(email, unique: true) // "email" TEXT UNIQUE NOT NULL,
t.column(name) // "name" TEXT
}) // )
Note:
Expression<T>
structures (in this case, theid
andNOT NULL
constraints automatically, whileExpression<T?>
structures (name
) do not.
The Table.create
function has several default parameters we can override.
-
temporary
adds aTEMPORARY
clause to theCREATE TABLE
statement (to create a temporary table that will automatically drop when the database connection closes). Default:false
.try db.run(users.create(temporary: true) { t in /* ... */ }) // CREATE TEMPORARY TABLE "users" -- ...
-
ifNotExists
adds anIF NOT EXISTS
clause to theCREATE TABLE
statement (which will bail out gracefully if the table already exists). Default:false
.try db.run(users.create(ifNotExists: true) { t in /* ... */ }) // CREATE TABLE "users" IF NOT EXISTS -- ...
The column
function is used for a single column definition. It takes an expression describing the column name and type, and accepts several parameters that map to various column constraints and clauses.
-
primaryKey
adds aPRIMARY KEY
constraint to a single column.t.column(id, primaryKey: true) // "id" INTEGER PRIMARY KEY NOT NULL t.column(id, primaryKey: .autoincrement) // "id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL
Note: The
primaryKey
parameter cannot be used alongsidereferences
. If you need to create a column that has a default value and is also a primary and/or foreign key, use theprimaryKey
andforeignKey
functions mentioned under Table Constraints.Primary keys cannot be optional (e.g.,
Expression<Int64?>
).Only an
INTEGER PRIMARY KEY
can take.autoincrement
. -
unique
adds aUNIQUE
constraint to the column. (See theunique
function under Table Constraints for uniqueness over multiple columns).t.column(email, unique: true) // "email" TEXT UNIQUE NOT NULL
-
check
attaches aCHECK
constraint to a column definition in the form of a boolean expression (Expression<Bool>
). Boolean expressions can be easily built using filter operators and functions. (See also thecheck
function under Table Constraints.)t.column(email, check: email.like("%@%")) // "email" TEXT NOT NULL CHECK ("email" LIKE '%@%')
-
defaultValue
adds aDEFAULT
clause to a column definition and only accepts a value (or expression) matching the column’s type. This value is used if none is explicitly provided during anINSERT
.t.column(name, defaultValue: "Anonymous") // "name" TEXT DEFAULT 'Anonymous'
Note: The
defaultValue
parameter cannot be used alongsideprimaryKey
andreferences
. If you need to create a column that has a default value and is also a primary and/or foreign key, use theprimaryKey
andforeignKey
functions mentioned under Table Constraints. -
collate
adds aCOLLATE
clause toExpression<String>
(andExpression<String?>
) column definitions with a collating sequence defined in theCollation
enumeration.t.column(email, collate: .nocase) // "email" TEXT NOT NULL COLLATE "NOCASE" t.column(name, collate: .rtrim) // "name" TEXT COLLATE "RTRIM"
-
references
adds aREFERENCES
clause toExpression<Int64>
(andExpression<Int64?>
) column definitions and accepts a table (SchemaType
) or namespaced column expression. (See theforeignKey
function under Table Constraints for non-integer foreign key support.)t.column(user_id, references: users, id) // "user_id" INTEGER REFERENCES "users" ("id")
> _Note:_ The `references` parameter cannot be used alongside `primaryKey` and `defaultValue`. If you need to create a column that has a default value and is also a primary and/or foreign key, use the `primaryKey` and `foreignKey` functions mentioned under [Table Constraints](#table-constraints).
Additional constraints may be provided outside the scope of a single column using the following functions.
-
primaryKey
adds aPRIMARY KEY
constraint to the table. Unlike the column constraint, above, it supports all SQLite types, ascending and descending orders, and composite (multiple column) keys.t.primaryKey(email.asc, name) // PRIMARY KEY("email" ASC, "name")
-
unique
adds aUNIQUE
constraint to the table. Unlike the column constraint, above, it supports composite (multiple column) constraints.t.unique(local, domain) // UNIQUE("local", "domain")
-
check
adds aCHECK
constraint to the table in the form of a boolean expression (Expression<Bool>
). Boolean expressions can be easily built using filter operators and functions. (See also thecheck
parameter under Column Constraints.)t.check(balance >= 0) // CHECK ("balance" >= 0.0)
-
foreignKey
adds aFOREIGN KEY
constraint to the table. Unlike thereferences
constraint, above, it supports all SQLite types, bothON UPDATE
andON DELETE
actions, and composite (multiple column) keys.t.foreignKey(user_id, references: users, id, delete: .setNull) // FOREIGN KEY("user_id") REFERENCES "users"("id") ON DELETE SET NULL
We can insert rows into a table by calling a query’s insert
function with a list of setters—typically typed column expressions and values (which can also be expressions)—each joined by the <-
operator.
try db.run(users.insert(email <- "alice@mac.com", name <- "Alice"))
// INSERT INTO "users" ("email", "name") VALUES ('alice@mac.com', 'Alice')
try db.run(users.insert(or: .replace, email <- "alice@mac.com", name <- "Alice B."))
// INSERT OR REPLACE INTO "users" ("email", "name") VALUES ('alice@mac.com', 'Alice B.')
The insert
function, when run successfully, returns an Int64
representing the inserted row’s ROWID
.
do {
let rowid = try db.run(users.insert(email <- "alice@mac.com"))
print("inserted id: \(rowid)")
} catch {
print("insertion failed: \(error)")
}
The update
and delete
functions follow similar patterns.
Note: If
insert
is called without any arguments, the statement will run with aDEFAULT VALUES
clause. The table must not have any constraints that aren’t fulfilled by default values.try db.run(timestamps.insert()) // INSERT INTO "timestamps" DEFAULT VALUES
SQLite.swift typically uses the <-
operator to set values during inserts and updates.
try db.run(counter.update(count <- 0))
// UPDATE "counters" SET "count" = 0 WHERE ("id" = 1)
There are also a number of convenience setters that take the existing value into account using native Swift operators.
For example, to atomically increment a column, we can use ++
:
try db.run(counter.update(count++)) // equivalent to `counter.update(count -> count + 1)`
// UPDATE "counters" SET "count" = "count" + 1 WHERE ("id" = 1)
To take an amount and “move” it via transaction, we can use -=
and +=
:
let amount = 100.0
try db.transaction {
try db.run(alice.update(balance -= amount))
try db.run(betty.update(balance += amount))
}
// BEGIN DEFERRED TRANSACTION
// UPDATE "users" SET "balance" = "balance" - 100.0 WHERE ("id" = 1)
// UPDATE "users" SET "balance" = "balance" + 100.0 WHERE ("id" = 2)
// COMMIT TRANSACTION
Operator | Types |
---|---|
<- |
Value -> Value |
+= |
Number -> Number |
-= |
Number -> Number |
*= |
Number -> Number |
/= |
Number -> Number |
%= |
Int -> Int |
<<= |
Int -> Int |
>>= |
Int -> Int |
&= |
Int -> Int |
` | |
^= |
Int -> Int |
+= |
String -> String |
Operator | Types |
---|---|
++ |
Int -> Int |
-- |
Int -> Int |
Query structures are SELECT
statements waiting to happen. They execute via iteration and other means of sequence access.
Prepared queries execute lazily upon iteration. Each row is returned as a Row
object, which can be subscripted with a column expression matching one of the columns returned.
for user in try db.prepare(users) {
print("id: \(user[id]), email: \(user[email]), name: \(user[name])")
// id: 1, email: alice@mac.com, name: Optional("Alice")
}
// SELECT * FROM "users"
Expression<T>
column values are automatically unwrapped (we’ve made a promise to the compiler that they’ll never be NULL
), while Expression<T?>
values remain wrapped.
We can pluck the first row by passing a query to the pluck
function on a database connection.
if let user = try db.pluck(users) { /* ... */ } // Row
// SELECT * FROM "users" LIMIT 1
To collect all rows into an array, we can simply wrap the sequence (though this is not always the most memory-efficient idea).
let all = Array(try db.prepare(users))
// SELECT * FROM "users"
Queries have a number of chainable functions that can be used (with expressions) to add and modify a number of clauses to the underlying statement.
let query = users.select(email) // SELECT "email" FROM "users"
.filter(name != nil) // WHERE "name" IS NOT NULL
.order(email.desc, name) // ORDER BY "email" DESC, "name"
.limit(5, offset: 1) // LIMIT 5 OFFSET 1
By default, queries select every column of the result set (using SELECT *
). We can use the select
function with a list of expressions to return specific columns instead.
for user in try db.prepare(users.select(id, email)) {
print("id: \(user[id]), email: \(user[email])")
// id: 1, email: alice@mac.com
}
// SELECT "id", "email" FROM "users"
We can access the results of more complex expressions by holding onto a reference of the expression itself.
let sentence = name + " is " + cast(age) as Expression<String?> + " years old!"
for user in users.select(sentence) {
print(user[sentence])
// Optional("Alice is 30 years old!")
}
// SELECT ((("name" || ' is ') || CAST ("age" AS TEXT)) || ' years old!') FROM "users"
We can join tables using a query’s join
function.
users.join(posts, on: user_id == users[id])
// SELECT * FROM "users" INNER JOIN "posts" ON ("user_id" = "users"."id")
The join
function takes a query object (for the table being joined on), a join condition (on
), and is prefixed with an optional join type (default: .inner
). Join conditions can be built using filter operators and functions, generally require namespacing, and sometimes require aliasing.
When joining tables, column names can become ambiguous. E.g., both tables may have an id
column.
let query = users.join(posts, on: user_id == id)
// assertion failure: ambiguous column 'id'
We can disambiguate by namespacing id
.
let query = users.join(posts, on: user_id == users[id])
// SELECT * FROM "users" INNER JOIN "posts" ON ("user_id" = "users"."id")
Namespacing is achieved by subscripting a query with a column expression (e.g., users[id]
above becomes users.id
).
Note: We can namespace all of a table’s columns using
*
.let query = users.select(users[*]) // SELECT "users".* FROM "users"
Occasionally, we need to join a table to itself, in which case we must alias the table with another name. We can achieve this using the query’s alias
function.
let managers = users.alias("managers")
let query = users.join(managers, on: managers[id] == users[managerId])
// SELECT * FROM "users"
// INNER JOIN ("users") AS "managers" ON ("managers"."id" = "users"."manager_id")
If query results can have ambiguous column names, row values should be accessed with namespaced column expressions. In the above case, SELECT *
immediately namespaces all columns of the result set.
let user = try db.pluck(query)
user[id] // fatal error: ambiguous column 'id'
// (please disambiguate: ["users"."id", "managers"."id"])
user[users[id]] // returns "users"."id"
user[managers[id]] // returns "managers"."id"
SQLite.swift filters rows using a query’s filter
function with a boolean expression (Expression<Bool>
).
users.filter(id == 1)
// SELECT * FROM "users" WHERE ("id" = 1)
users.filter([1, 2, 3, 4, 5].contains(id))
// SELECT * FROM "users" WHERE ("id" IN (1, 2, 3, 4, 5))
users.filter(email.like("%@mac.com"))
// SELECT * FROM "users" WHERE ("email" LIKE '%@mac.com')
users.filter(verified && name.lowercaseString == "alice")
// SELECT * FROM "users" WHERE ("verified" AND (lower("name") == 'alice'))
users.filter(verified || balance >= 10_000)
// SELECT * FROM "users" WHERE ("verified" OR ("balance" >= 10000.0))
We can build our own boolean expressions by using one of the many filter operators and functions.
Instead of filter
we can also use the where
function which is an alias:
users.where(id == 1)
// SELECT * FROM "users" WHERE ("id" = 1)
SQLite.swift defines a number of operators for building filtering predicates. Operators and functions work together in a type-safe manner, so attempting to equate or compare different types will prevent compilation.
Swift | Types | SQLite |
---|---|---|
== |
Equatable -> Bool |
= /IS * |
!= |
Equatable -> Bool |
!= /IS NOT * |
> |
Comparable -> Bool |
> |
>= |
Comparable -> Bool |
>= |
< |
Comparable -> Bool |
< |
<= |
Comparable -> Bool |
<= |
~= |
(Interval, Comparable) -> Bool |
BETWEEN |
&& |
Bool -> Bool |
AND |
` | ` |
*When comparing against
nil
, SQLite.swift will useIS
andIS NOT
accordingly.
Swift | Types | SQLite |
---|---|---|
! |
Bool -> Bool |
NOT |
Swift | Types | SQLite |
---|---|---|
like |
String -> Bool |
LIKE |
glob |
String -> Bool |
GLOB |
match |
String -> Bool |
MATCH |
contains |
(Array<T>, T) -> Bool |
IN |
We can pre-sort returned rows using the query’s order
function.
E.g., to return users sorted by email
, then name
, in ascending order:
users.order(email, name)
// SELECT * FROM "users" ORDER BY "email", "name"
The order
function takes a list of column expressions.
Expression
objects have two computed properties to assist sorting: asc
and desc
. These properties append the expression with ASC
and DESC
to mark ascending and descending order respectively.
users.order(email.desc, name.asc)
// SELECT * FROM "users" ORDER BY "email" DESC, "name" ASC
We can limit and skip returned rows using a query’s limit
function (and its optional offset
parameter).
users.limit(5)
// SELECT * FROM "users" LIMIT 5
users.limit(5, offset: 5)
// SELECT * FROM "users" LIMIT 5 OFFSET 5
Queries come with a number of functions that quickly return aggregate scalar values from the table. These mirror the core aggregate functions and are executed immediately against the query.
let count = try db.scalar(users.count)
// SELECT count(*) FROM "users"
Filtered queries will appropriately filter aggregate values.
let count = try db.scalar(users.filter(name != nil).count)
// SELECT count(*) FROM "users" WHERE "name" IS NOT NULL
-
count
as a computed property on a query (see examples above) returns the total number of rows matching the query.count
as a computed property on a column expression returns the total number of rows where that column is notNULL
.let count = try db.scalar(users.select(name.count)) // -> Int // SELECT count("name") FROM "users"
-
max
takes a comparable column expression and returns the largest value if any exists.let max = try db.scalar(users.select(id.max)) // -> Int64? // SELECT max("id") FROM "users"
-
min
takes a comparable column expression and returns the smallest value if any exists.let min = try db.scalar(users.select(id.min)) // -> Int64? // SELECT min("id") FROM "users"
-
average
takes a numeric column expression and returns the average row value (as aDouble
) if any exists.let average = try db.scalar(users.select(balance.average)) // -> Double? // SELECT avg("balance") FROM "users"
-
sum
takes a numeric column expression and returns the sum total of all rows if any exist.let sum = try db.scalar(users.select(balance.sum)) // -> Double? // SELECT sum("balance") FROM "users"
-
total
, likesum
, takes a numeric column expression and returns the sum total of all rows, but in this case always returns aDouble
, and returns0.0
for an empty query.let total = try db.scalar(users.select(balance.total)) // -> Double // SELECT total("balance") FROM "users"
Note: Expressions can be prefixed with a
DISTINCT
clause by calling thedistinct
computed property.let count = try db.scalar(users.select(name.distinct.count) // -> Int // SELECT count(DISTINCT "name") FROM "users"
We can update a table’s rows by calling a query’s update
function with a list of setters—typically typed column expressions and values (which can also be expressions)—each joined by the <-
operator.
When an unscoped query calls update
, it will update every row in the table.
try db.run(users.update(email <- "alice@me.com"))
// UPDATE "users" SET "email" = 'alice@me.com'
Be sure to scope UPDATE
statements beforehand using the filter
function.
let alice = users.filter(id == 1)
try db.run(alice.update(email <- "alice@me.com"))
// UPDATE "users" SET "email" = 'alice@me.com' WHERE ("id" = 1)
The update
function returns an Int
representing the number of updated rows.
do {
if try db.run(alice.update(email <- "alice@me.com")) > 0 {
print("updated alice")
} else {
print("alice not found")
}
} catch {
print("update failed: \(error)")
}
We can delete rows from a table by calling a query’s delete
function.
When an unscoped query calls delete
, it will delete every row in the table.
try db.run(users.delete())
// DELETE FROM "users"
Be sure to scope DELETE
statements beforehand using the filter
function.
let alice = users.filter(id == 1)
try db.run(alice.delete())
// DELETE FROM "users" WHERE ("id" = 1)
The delete
function returns an Int
representing the number of deleted rows.
do {
if try db.run(alice.delete()) > 0 {
print("deleted alice")
} else {
print("alice not found")
}
} catch {
print("delete failed: \(error)")
}
Using the transaction
and savepoint
functions, we can run a series of statements in a transaction. If a single statement fails or the block throws an error, the changes will be rolled back.
try db.transaction {
let rowid = try db.run(users.insert(email <- "betty@icloud.com"))
try db.run(users.insert(email <- "cathy@icloud.com", managerId <- rowid))
}
// BEGIN DEFERRED TRANSACTION
// INSERT INTO "users" ("email") VALUES ('betty@icloud.com')
// INSERT INTO "users" ("email", "manager_id") VALUES ('cathy@icloud.com', 2)
// COMMIT TRANSACTION
Note: Transactions run in a serial queue.
SQLite.swift comes with several functions (in addition to Table.create
) for altering a database schema in a type-safe manner.
We can build an ALTER TABLE … RENAME TO
statement by calling the rename
function on a Table
or VirtualTable
.
try db.run(users.rename(Table("users_old"))
// ALTER TABLE "users" RENAME TO "users_old"
We can add columns to a table by calling addColumn
function on a Table
. SQLite.swift enforces the same limited subset of ALTER TABLE
that SQLite supports.
try db.run(users.addColumn(suffix))
// ALTER TABLE "users" ADD COLUMN "suffix" TEXT
The addColumn
function shares several of the same column
function parameters used when creating tables.
-
check
attaches aCHECK
constraint to a column definition in the form of a boolean expression (Expression<Bool>
). (See also thecheck
function under Table Constraints.)try db.run(users.addColumn(suffix, check: ["JR", "SR"].contains(suffix))) // ALTER TABLE "users" ADD COLUMN "suffix" TEXT CHECK ("suffix" IN ('JR', 'SR'))
-
defaultValue
adds aDEFAULT
clause to a column definition and only accepts a value matching the column’s type. This value is used if none is explicitly provided during anINSERT
.try db.run(users.addColumn(suffix, defaultValue: "SR")) // ALTER TABLE "users" ADD COLUMN "suffix" TEXT DEFAULT 'SR'
Note: Unlike the
CREATE TABLE
constraint, default values may not be expression structures (includingCURRENT_TIME
,CURRENT_DATE
, orCURRENT_TIMESTAMP
). -
collate
adds aCOLLATE
clause toExpression<String>
(andExpression<String?>
) column definitions with a collating sequence defined in theCollation
enumeration.try db.run(users.addColumn(email, collate: .nocase)) // ALTER TABLE "users" ADD COLUMN "email" TEXT NOT NULL COLLATE "NOCASE" try db.run(users.addColumn(name, collate: .rtrim)) // ALTER TABLE "users" ADD COLUMN "name" TEXT COLLATE "RTRIM"
-
references
adds aREFERENCES
clause toInt64
(andInt64?
) column definitions and accepts a table or namespaced column expression. (See theforeignKey
function under Table Constraints for non-integer foreign key support.)try db.run(posts.addColumn(userId, references: users, id) // ALTER TABLE "posts" ADD COLUMN "user_id" INTEGER REFERENCES "users" ("id")
We can build CREATE INDEX
statements by calling the createIndex
function on a SchemaType
.
try db.run(users.createIndex(email))
// CREATE INDEX "index_users_on_email" ON "users" ("email")
The index name is generated automatically based on the table and column names.
The createIndex
function has a couple default parameters we can override.
-
unique
adds aUNIQUE
constraint to the index. Default:false
.try db.run(users.createIndex(email, unique: true)) // CREATE UNIQUE INDEX "index_users_on_email" ON "users" ("email")
-
ifNotExists
adds anIF NOT EXISTS
clause to theCREATE TABLE
statement (which will bail out gracefully if the table already exists). Default:false
.try db.run(users.createIndex(email, ifNotExists: true)) // CREATE INDEX IF NOT EXISTS "index_users_on_email" ON "users" ("email")
We can build DROP INDEX
statements by calling the dropIndex
function on a SchemaType
.
try db.run(users.dropIndex(email))
// DROP INDEX "index_users_on_email"
The dropIndex
function has one additional parameter, ifExists
, which (when true
) adds an IF EXISTS
clause to the statement.
try db.run(users.dropIndex(email, ifExists: true))
// DROP INDEX IF EXISTS "index_users_on_email"
We can build DROP TABLE
statements by calling the dropTable
function on a SchemaType
.
try db.run(users.drop())
// DROP TABLE "users"
The drop
function has one additional parameter, ifExists
, which (when true
) adds an IF EXISTS
clause to the statement.
try db.run(users.drop(ifExists: true))
// DROP TABLE IF EXISTS "users"
You can add a convenience property on Connection
to query and set the PRAGMA user_version
.
This is a great way to manage your schema’s version over migrations.
extension Connection {
public var userVersion: Int32 {
get { return Int32(try! scalar("PRAGMA user_version") as! Int64)}
set { try! run("PRAGMA user_version = \(newValue)") }
}
}
Then you can conditionally run your migrations along the lines of:
if db.userVersion == 0 {
// handle first migration
db.userVersion = 1
}
if db.userVersion == 1 {
// handle second migration
db.userVersion = 2
}
For more complex migration requirements check out the schema management system SQLiteMigrationManager.swift.
SQLite.swift supports serializing and deserializing any custom type as long as it conforms to the Value
protocol.
protocol Value { typealias Datatype: Binding class var declaredDatatype: String { get } class func fromDatatypeValue(datatypeValue: Datatype) -> Self var datatypeValue: Datatype { get } }
The Datatype
must be one of the basic Swift types that values are bridged through before serialization and deserialization (see Building Type-Safe SQL for a list of types).
Note:
Binding
is a protocol that SQLite.swift uses internally to directly map SQLite types to Swift types. Do not conform custom types to theBinding
protocol.
Once extended, the type can be used almost wherever typed expressions can be.
In SQLite, DATETIME
columns can be treated as strings or numbers, so we can transparently bridge Date
objects through Swift’s String
or Int
types.
To serialize Date
objects as TEXT
values (in ISO 8601), we’ll use String
.
extension Date: Value {
class var declaredDatatype: String {
return String.declaredDatatype
}
class func fromDatatypeValue(stringValue: String) -> Date {
return SQLDateFormatter.dateFromString(stringValue)!
}
var datatypeValue: String {
return SQLDateFormatter.stringFromDate(self)
}
}
let SQLDateFormatter: DateFormatter = {
let formatter = DateFormatter()
formatter.dateFormat = "yyyy-MM-dd'T'HH:mm:ss.SSS"
formatter.locale = Locale(localeIdentifier: "en_US_POSIX")
formatter.timeZone = TimeZone(forSecondsFromGMT: 0)
return formatter
}()
We can also treat them as INTEGER
values using Int
.
extension Date: Value {
class var declaredDatatype: String {
return Int.declaredDatatype
}
class func fromDatatypeValue(intValue: Int) -> Self {
return self(timeIntervalSince1970: TimeInterval(intValue))
}
var datatypeValue: Int {
return Int(timeIntervalSince1970)
}
}
Note: SQLite’s
CURRENT_DATE
,CURRENT_TIME
, andCURRENT_TIMESTAMP
helpers returnTEXT
values. Because of this (and the fact that Unix time is far less human-readable when we’re faced with the raw data), we recommend using theTEXT
extension.
Once defined, we can use these types directly in SQLite statements.
let published_at = Expression<Date>("published_at")
let published = posts.filter(published_at <= Date())
// extension where Datatype == String:
// SELECT * FROM "posts" WHERE "published_at" <= '2014-11-18 12:45:30'
// extension where Datatype == Int:
// SELECT * FROM "posts" WHERE "published_at" <= 1416314730
We can bridge any type that can be initialized from and encoded to Data
.
extension UIImage: Value {
public class var declaredDatatype: String {
return Blob.declaredDatatype
}
public class func fromDatatypeValue(blobValue: Blob) -> UIImage {
return UIImage(data: Data.fromDatatypeValue(blobValue))!
}
public var datatypeValue: Blob {
return UIImagePNGRepresentation(self)!.datatypeValue
}
}
Note: See the Archives and Serializations Programming Guide for more information on encoding and decoding custom types.
Swift does not currently support generic subscripting, which means we cannot, by default, subscript Expressions with custom types to:
-
Namespace expressions. Use the
namespace
function, instead:let avatar = Expression<UIImage?>("avatar") users[avatar] // fails to compile users.namespace(avatar) // "users"."avatar"
-
Access column data. Use the
get
function, instead:let user = users.first! user[avatar] // fails to compile user.get(avatar) // UIImage?
We can, of course, write extensions, but they’re rather wordy.
extension Query {
subscript(column: Expression<UIImage>) -> Expression<UIImage> {
return namespace(column)
}
subscript(column: Expression<UIImage?>) -> Expression<UIImage?> {
return namespace(column)
}
}
extension Row {
subscript(column: Expression<UIImage>) -> UIImage {
return get(column)
}
subscript(column: Expression<UIImage?>) -> UIImage? {
return get(column)
}
}
In addition to filter operators, SQLite.swift defines a number of operators that can modify expression values with arithmetic, bitwise operations, and concatenation.
Swift | Types | SQLite |
---|---|---|
+ |
Number -> Number |
+ |
- |
Number -> Number |
- |
* |
Number -> Number |
* |
/ |
Number -> Number |
/ |
% |
Int -> Int |
% |
<< |
Int -> Int |
<< |
>> |
Int -> Int |
>> |
& |
Int -> Int |
& |
` | ` | Int -> Int |
+ |
String -> String |
` |
Note: SQLite.swift also defines a bitwise XOR operator,
^
, which expands the expressionlhs ^ rhs
to~(lhs & rhs) & (lhs | rhs)
.
Swift | Types | SQLite |
---|---|---|
~ |
Int -> Int |
~ |
- |
Number -> Number |
- |
Many of SQLite’s core functions have been surfaced in and type-audited for SQLite.swift.
Note: SQLite.swift aliases the
??
operator to theifnull
function.name ?? email // ifnull("name", "email")
Most of SQLite’s aggregate functions have been surfaced in and type-audited for SQLite.swift.
We can create custom SQL functions by calling createFunction
on a database connection.
For example, to give queries access to MobileCoreServices.UTTypeConformsTo
, we can write the following:
import MobileCoreServices
let typeConformsTo: (Expression<String>, Expression<String>) -> Expression<Bool> = (
try db.createFunction("typeConformsTo", deterministic: true) { UTI, conformsToUTI in
return UTTypeConformsTo(UTI, conformsToUTI)
}
)
Note: The optional
deterministic
parameter is an optimization that causes the function to be created withSQLITE_DETERMINISTIC
.
Note typeConformsTo
’s signature:
(Expression<String>, Expression<String>) -> Expression<Bool>
Because of this, createFunction
expects a block with the following signature:
(String, String) -> Bool
Once assigned, the closure can be called wherever boolean expressions are accepted.
let attachments = Table("attachments")
let UTI = Expression<String>("UTI")
let images = attachments.filter(typeConformsTo(UTI, kUTTypeImage))
// SELECT * FROM "attachments" WHERE "typeConformsTo"("UTI", 'public.image')
Note: The return type of a function must be a core SQL type or conform to
Value
.
We can create loosely-typed functions by handling an array of raw arguments, instead.
db.createFunction("typeConformsTo", deterministic: true) { args in
guard let UTI = args[0] as? String, conformsToUTI = args[1] as? String else { return nil }
return UTTypeConformsTo(UTI, conformsToUTI)
}
Creating a loosely-typed function cannot return a closure and instead must be wrapped manually or executed using raw SQL.
let stmt = try db.prepare("SELECT * FROM attachments WHERE typeConformsTo(UTI, ?)")
for row in stmt.bind(kUTTypeImage) { /* ... */ }
We can create custom collating sequences by calling createCollation
on a database connection.
try db.createCollation("NODIACRITIC") { lhs, rhs in
return lhs.compare(rhs, options: .diacriticInsensitiveSearch)
}
We can reference a custom collation using the Custom
member of the Collation
enumeration.
restaurants.order(collate(.custom("NODIACRITIC"), name))
// SELECT * FROM "restaurants" ORDER BY "name" COLLATE "NODIACRITIC"
We can create a virtual table using the FTS4 module by calling create
on a VirtualTable
.
let emails = VirtualTable("emails")
let subject = Expression<String>("subject")
let body = Expression<String>("body")
try db.run(emails.create(.FTS4(subject, body)))
// CREATE VIRTUAL TABLE "emails" USING fts4("subject", "body")
We can specify a tokenizer using the tokenize
parameter.
try db.run(emails.create(.FTS4([subject, body], tokenize: .Porter)))
// CREATE VIRTUAL TABLE "emails" USING fts4("subject", "body", tokenize=porter)
We can set the full range of parameters by creating a FTS4Config
object.
let emails = VirtualTable("emails")
let subject = Expression<String>("subject")
let body = Expression<String>("body")
let config = FTS4Config()
.column(subject)
.column(body, [.unindexed])
.languageId("lid")
.order(.desc)
try db.run(emails.create(.FTS4(config))
// CREATE VIRTUAL TABLE "emails" USING fts4("subject", "body", notindexed="body", languageid="lid", order="desc")
Once we insert a few rows, we can search using the match
function, which takes a table or column as its first argument and a query string as its second.
try db.run(emails.insert(
subject <- "Just Checking In",
body <- "Hey, I was just wondering...did you get my last email?"
))
let wonderfulEmails: QueryType = emails.match("wonder*")
// SELECT * FROM "emails" WHERE "emails" MATCH 'wonder*'
let replies = emails.filter(subject.match("Re:*"))
// SELECT * FROM "emails" WHERE "subject" MATCH 'Re:*'
When linking against a version of SQLite with FTS5 enabled we can create the virtual table in a similar fashion.
let emails = VirtualTable("emails")
let subject = Expression<String>("subject")
let body = Expression<String>("body")
let config = FTS5Config()
.column(subject)
.column(body, [.unindexed])
try db.run(emails.create(.FTS5(config))
// CREATE VIRTUAL TABLE "emails" USING fts5("subject", "body" UNINDEXED)
// Note that FTS5 uses a different syntax to select columns, so we need to rewrite
// the last FTS4 query above as:
let replies = emails.filter(emails.match("subject:\"Re:\"*))
// SELECT * FROM "emails" WHERE "emails" MATCH 'subject:"Re:"*'
// https://www.sqlite.org/fts5.html#_changes_to_select_statements_
Though we recommend you stick with SQLite.swift’s type-safe system whenever possible, it is possible to simply and safely prepare and execute raw SQL statements via a Database
connection using the following functions.
-
execute
runs an arbitrary number of SQL statements as a convenience.try db.execute( "BEGIN TRANSACTION;" + "CREATE TABLE users (" + "id INTEGER PRIMARY KEY NOT NULL," + "email TEXT UNIQUE NOT NULL," + "name TEXT" + ");" + "CREATE TABLE posts (" + "id INTEGER PRIMARY KEY NOT NULL," + "title TEXT NOT NULL," + "body TEXT NOT NULL," + "published_at DATETIME" + ");" + "PRAGMA user_version = 1;" + "COMMIT TRANSACTION;" )
-
prepare
prepares a singleStatement
object from a SQL string, optionally binds values to it (using the statement’sbind
function), and returns the statement for deferred execution.let stmt = try db.prepare("INSERT INTO users (email) VALUES (?)")
Once prepared, statements may be executed using
run
, binding any unbound parameters.try stmt.run("alice@mac.com") db.changes // -> {Some 1}
Statements with results may be iterated over, using the columnNames if useful.
let stmt = try db.prepare("SELECT id, email FROM users") for row in stmt { for (index, name) in stmt.columnNames.enumerate() { print ("\(name)=\(row[index]!)") // id: Optional(1), email: Optional("alice@mac.com") } }
-
run
prepares a singleStatement
object from a SQL string, optionally binds values to it (using the statement’sbind
function), executes, and returns the statement.try db.run("INSERT INTO users (email) VALUES (?)", "alice@mac.com")
-
scalar
prepares a singleStatement
object from a SQL string, optionally binds values to it (using the statement’sbind
function), executes, and returns the first value of the first row.let count = try db.scalar("SELECT count(*) FROM users") as! Int64
Statements also have a
scalar
function, which can optionally re-bind values at execution.let stmt = try db.prepare("SELECT count (*) FROM users") let count = try stmt.scalar() as! Int64
We can log SQL using the database’s trace
function.
#if DEBUG
db.trace(print)
#endif