Skip to content

Latest commit

 

History

History
146 lines (110 loc) · 9.56 KB

README.md

File metadata and controls

146 lines (110 loc) · 9.56 KB

Neural Architecture Search Powered by Swarm Intelligence 🐜

DeepSwarm

DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle the neural architecture search problem. The main goal of DeepSwarm is to automate one of the most tedious and daunting tasks, so people can spend more of their time on more important and interesting things. DeepSwarm offers a powerful configuration system which allows you to fine-tune the search space to your needs.

Example 🖼

from deepswarm.backends import Dataset, TFKerasBackend
from deepswarm.deepswarm import DeepSwarm

dataset = Dataset(training_examples=x_train, training_labels=y_train, testing_examples=x_test, testing_labels=y_test)
backend = TFKerasBackend(dataset=dataset)
deepswarm = DeepSwarm(backend=backend)
topology = deepswarm.find_topology()
trained_topology = deepswarm.train_topology(topology, 50)

Installation 💾

For Deepswarm 1 only

  1. Install the package

    pip install deepswarm
  2. Install one of the implemented backends that you want to use

    pip install tensorflow-gpu==1.13.1

For Deepswarm 1 & 2

  1. Install the repository

     git clone https://github.com/tgey/DeepSwarm.git 
     cd Deepswarm
  2. Install Python dependencies needed in Deepswarm (including implemented backends)

    For GPU runs

    pip install -r requirements-gpu.txt

    For CPU runs

    pip install -r requirements-cpu.txt

Usage 🕹

  1. Create a new file containing the example code

    touch train.py
  2. Create settings directory which contains default.yaml file. Alternatively you can run the script and instantly stop it, as this should automatically create settings directory which contains default.yaml file

  3. Update the newly created YAML file to your dataset needs. The only two important changes you must make are: (1) change the loss function to reflect your task (2) change the shape of input and output nodes

Search 🔎

(1) The ant is placed on the input node. (2) The ant checks what transitions are available. (3) The ant uses the ACS selection rule to choose the next node. (4) After choosing the next node the ant selects node’s attributes. (5) After all ants finished their tour the pheromone is updated. (6) The maximum allowed depth is increased and the new ant population is generated.

Note: Arrow thickness indicates the pheromone amount, meaning that thicker arrows have more pheromone.

Configuration 🛠

Node type Attributes
Input shape: tuple which defines the input shape, depending on the backend could be (width, height, channels) or (channels, width, height).
Conv2D filter_count: defines how many filters can be used.
kernel_size: defines what size kernels can be used. For example, if it is set to [1, 3], then only 1x1 and 3x3 kernels will be used.
activation: defines what activation functions can be used. Allowed values are: ReLU, ELU, LeakyReLU, Sigmoid and Softmax.
Dropout rate: defines the allowed dropout rates. For example, if it is set to [0.1, 0.3], then either 10% or 30% of input units will be dropped.
BatchNormalization -
Pool2D pool_type: defines the types of allowed pooling nodes. Allowed values are: max (max pooling) and average (average pooling).
pool_size: defines the allowed pooling window sizes. For example, if it is set to [2], then only 2x2 pooling windows will be used.
stride: defines the allowed stride sizes.
Flatten -
Dense output_size: defines the allowed output space dimensionality.
activation: defines what activation functions can be used. Allowed values are: ReLU, ELU, LeakyReLU, Sigmoid and Softmax.
ResNet Block layers: defines the number of layers a resNet block contains.
filter_count: defines how many filters can be used.
kernel_size: defines what size kernels can be used. For example, if it is set to [1, 3], then only 1x1 and 3x3 kernels will be used.
kernel_initializer: Defines which function to use for initialising the weights.
DensetNet Block layers: defines the number of bottleneck blcoks a DenseNet block contains.
filter_count: defines how many filters can be used.
kernel_size: defines what size kernels can be used. For example, if it is set to [1, 3], then only 1x1 and 3x3 kernels will be used.
kernel_initializer: Defines which function to use for initialising the weights.
rate: defines the allowed dropout rates. For example, if it is set to [0.1, 0.3], then either 10% or 30% of input units will be dropped.
Output output_size: defines the output size (how many different classes to classify).
activation: defines what activation functions can be used. Allowed value are ReLU, ELU, LeakyReLU, Sigmoid and Softmax.
Setting Description
save_folder Specifies the name of the folder which should be used to load the backup. If not specified the search will start from zero.
metrics Specifies what metrics should algorithm use to evaluate the models. Currently available options are: accuracy and loss.
start_depth Specifies the start depth of the graph. The search is performed from that depth.
max_depth Specifies the maximum allowed network depth (how deeply the graph can be expanded). The search is performed until the maximum depth is reached. However, it does not mean that the depth of the best architecture will be equal to the max_depth.
residual_depth Specifies how many depth an ant can skip during the search process. By default, the residual_depth is set to 0. For example, an ant a depth 3 could select a node a depth 5 and skip depth 4 if the residual_depth is equal or greater than 1.
reuse_patience Specifies the maximum number of times that weights can be reused without improving the cost. For example, if it is set to 1 it means that when some model X reuses weights from model Y and model X cost did not improve compared to model Y, next time instead of reusing model Y weights, new random weights will be generated.
start Specifies the starting pheromone value for all the new connections.
decay Specifies the local pheromone decay rate in percentage. For example, if it is set to 0.1 it means that during the local pheromone update the pheromone value will be decreased by 10%.
evaporation Specifies the global pheromone evaporation rate in percentage. For example, if it is set to 0.1 it means that during the global pheromone update the pheromone value will be decreased by 10%.
greediness Specifies how greedy should ants be during the edge selection (the number is given in percentage). For example, 0.5 means that 50% of the time when ant selects a new edge it should select the one with the highest associated probability.
ant_count Specifies how many ants should be generated during each generation (time before the depth is increased).
epochs Specifies for how many epochs each candidate architecture should be trained.
batch_size Specifies the batch size (number of samples used to calculate a single gradient step) used during the training process.
patience Specifies the early stopping number used during the training (after how many epochs when the cost is not improving the training process should be stopped).
loss Specifies what loss function should be used during the training. Currently available options are sparse_categorical_crossentropy and categorical_crossentropy.
spatial_nodes Specifies which nodes are placed before the flattening node. Values in this array must correspond to node names.
flat_nodes Specifies which nodes are placed after the flattening node (array should also include the flattening node). Values in this array must correspond to node names.
verbose Specifies if the associated component should log the output.

Future goals 🌟

  • Add a node which can combine the input from the two previous nodes.
  • Delete the models which are not referenced anymore.
  • Add an option to assemble the best n models into one model.
  • Add new node types
  • Implement new backends
  • Add functionality to reuse the weights from the non-continues blocks, i.e. take the best weights for depth n-1 from one model and then take the best weights for depth n+1 from another model.

Citation 🖋

Online version is available at: arXiv:1905.07350

@article{byla2019deepswarm,
  title   =  {DeepSwarm: Optimising Convolutional Neural Networks using Swarm Intelligence},
  author  =  {Edvinas Byla and Wei Pang},
  journal =  {arXiv preprint arXiv:1905.07350},
  year    =  {2019}
}

Acknowledgments 🎓

DeepSwarm was developed under the supervision of Dr Wei Pang in partial fulfilment of the requirements for the degree of Bachelor of Science of the University of Aberdeen.