-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
677 lines (589 loc) · 21.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
from abc import ABC, abstractmethod
import bitstring
from bitstring import BitArray
# bitstring.lsb0 = True
# BitArray = bitstring.BitArray
class Model(ABC):
"""Abstract class for the model"""
def __init__(self, register_file) -> None:
self._register_file = register_file
self._controller = None
def set_controller(self, controller):
"""sets he controller of the memory"""
self._controller = controller
@abstractmethod
def __repr__(self):
pass
@property
@abstractmethod
def get_pc(self):
return None
@property
@abstractmethod
def get_registers(self):
return None
@abstractmethod
def do_clock(self):
pass
@abstractmethod
def do_reset(self):
pass
# the imm value is stored in different ways depending on the instruction, this
# just standardizes it. None represents 0 and an empty list represents no imm.
# MSB is a index 0 so the list is reversed
IMM_DICT = {
# L
BitArray('0b0000011', length=7).bin: [*range(-32, -20)],
# i
BitArray('0b0010011', length=7).bin: [*range(-32, -20)],
# s
BitArray('0b0100011', length=7).bin: [*range(-32, -25), *range(-12, -7)],
BitArray('0b0110011', length=7).bin: [], # none r
# b
BitArray('0b1100011', length=7).bin: [-32, -8, *range(-31, -25), *range(-12, -8), None],
# jalr
BitArray('0b1100111', length=7).bin: [*range(-32, -20)],
# jal
BitArray('0b1101111', length=7).bin: [-32, *range(-20, -12), -21, *range(-31, -21), None],
# lui
BitArray('0b0110111', length=7).bin: [*range(-32, -12), None, None, None, None, None, None, None, None, None, None, None, None],
BitArray('0b0010111', length=7).bin: [
*range(-32, -12), None, None, None, None, None, None, None, None, None, None, None, None] # aui
}
# this is the funct3 codes functions for the branch match case
FUNCT3_BEQ = BitArray('0b000', length=3)
FUNCT3_BNE = BitArray('0b001', length=3)
FUNCT3_BLT = BitArray('0b100', length=3)
FUNCT3_BGE = BitArray('0b101', length=3)
FUNCT3_BLTU = BitArray('0b110', length=3)
FUNCT3_BGEU = BitArray('0b111', length=3)
class MVP_Model(Model):
"""
The version of the model that is used for the MVP, upgraded to a multi-cycle CPU implementation.
"""
def __init__(self, register_file) -> None:
"""inits the model with a register file"""
self._register_file = register_file
self._controller = None
# PC set to none b/c it needs to be reset first (like the real model)
self._pc = None
self.OP_DICT = { # this shows the track for every path through the fsm (this only stores after the decode state)
BitArray('0b0000011', length=7).bin: 'l type', # L
BitArray('0b0010011', length=7).bin: 'i type', # i
BitArray('0b0100011', length=7).bin: 's type', # s
BitArray('0b0110011', length=7).bin: 'r type', # r
BitArray('0b1100011', length=7).bin: 'b type', # b
BitArray('0b1100111', length=7).bin: 'jr type', # jalr
BitArray('0b1101111', length=7).bin: 'jal type', # jal
BitArray('0b0110111', length=7).bin: 'lui type', # lui
BitArray('0b0010111', length=7).bin: 'aui type', # aui
}
self._alu = self.ALU(self) # init alu class
self._fsm_state = None
self._PC_write = None
self._result_slt = None
self._alu_control = None
def __repr__(self):
"""returns the string representation of the model"""
return self._register_file.__repr__()
@property
def get_pc(self):
"""returns the pc, a bitArray."""
return self._pc
@property
def get_registers(self):
"""returns the register file"""
return self._register_file
def do_reset(self):
"""resets the state of the model to the start of the program and
clears all registers"""
self._fsm_state = 'Fetch'
# resets the pc counter to 0
self._pc = BitArray('0x00000000', length=32)
self._data_mem_adr = BitArray('0x00000000', length=32)
self._pc = BitArray('0x00000000', length=32)
self._pc_old = BitArray('0x00000000', length=32)
self._current_instruction = BitArray('0x00000000', length=32)
self.rs1_data = BitArray('0x00000000', length=32)
self.rs2_data = BitArray('0x00000000', length=32)
self._alu_result_old = BitArray('0x00000000', length=32)
def do_instruction(self):
"""
runs the clock (which runs the FSM) until the instruction is
complete. It stops right before the next fetch state.
"""
if (self._fsm_state == 'Fetch'):
self.do_clock()
while self._fsm_state != 'Fetch':
if self.do_clock() < 1:
return
pass
def do_clock(self):
"""
A processor clock cycle. This is the main function of the model and
handles the FSM.
"""
print(self._pc)
print(self._fsm_state)
# this is the FSM
match(self._fsm_state):
# Fetch state
case 'Fetch':
self._IR_write = True
self._alu_a_slt = 'pc'
self._alu_b_slt = 'four'
self._alu_control = 'add'
self.next_fsm_state = 'Decode'
self._result_slt = 'alu_result'
self._write_to_register = False
self._addr_slt = False
self._PC_write = True
self._write_mem = False
# Decode state
case 'Decode':
if self._current_instruction is None: # this is for the end of the loop where is there is no instruction
return 0
self._IR_write = False
self._PC_write = False
# all the data is weirdly reserve indexed b/c of issues with the BitArray lib
op = self._current_instruction[-7:]
self.current_op = op
self._op_type = self.OP_DICT[op.bin]
# internal FSM for the decode state determines the next
# state and potentially the ALU control/ inputs
match(self._op_type):
case 'l type' | 's type':
self.next_fsm_state = 'MemAdr'
case 'i type':
self.next_fsm_state = 'Execute I'
case 'r type':
self.next_fsm_state = 'Execute R'
case 'b type':
self.next_fsm_state = 'Branch'
self._alu_a_slt = 'old pc'
self._alu_b_slt = 'imm'
case 'jr type':
self.next_fsm_state = 'Jump and link register'
self._alu_a_slt = 'rs1'
self._alu_b_slt = 'imm'
self._alu_control = 'add'
case 'jal type':
self.next_fsm_state = 'Jump and link'
self._alu_a_slt = 'old pc'
self._alu_b_slt = 'imm'
self._alu_control = 'add'
case 'lui type':
self.next_fsm_state = 'Load Upper Immediate'
case 'aui type':
self.next_fsm_state= 'Add Upper Immediate to PC'
# Memory address state
case 'MemAdr':
self._memory_address()
if self._op_type == 'l type':
self.next_fsm_state = 'MemRead'
else:
self.next_fsm_state = 'MemWrite'
# Memory read state
case 'MemRead':
self.memory_read()
self.next_fsm_state = 'MemWriteBack'
# Memory write back state
case 'MemWriteBack':
self.memory_write_back()
self.next_fsm_state = 'Fetch'
# Memory write state
case 'MemWrite':
self.memory_write()
self.next_fsm_state = 'Fetch'
# Execute I state
case 'Execute I':
self.execute_i()
self.next_fsm_state = 'alu writeback'
# Execute R state
case 'Execute R':
self.execute_r()
self.next_fsm_state = 'alu writeback'
# Jump and link register state
case 'Jump and link register':
self.jump_and_link_register()
self.next_fsm_state = 'jalr writeback'
# Jump and link state
case 'Jump and link':
self.jump_and_link()
self.next_fsm_state = 'alu writeback'
# ALU write back state
case 'alu writeback':
self._PC_write = False
self.alu_writeback()
self.next_fsm_state = 'Fetch'
# Jump and link register write back state
case 'jalr writeback':
self._PC_write = False
self.jalr_writeback()
self.next_fsm_state = 'Fetch'
# Branch state
case 'Branch':
self.branch()
self.next_fsm_state = 'Fetch'
# Add upper immediate to pc state
case 'Add Upper Immediate to PC':
self.execute_aui()
self.next_fsm_state = "Fetch"
# Load upper immediate state
case 'Load Upper Immediate':
self._write_to_register = True
self._result_slt = 'imm'
self.next_fsm_state = 'Fetch'
# only write to data mem if needed
if self._write_mem:
self._controller.set_data_mem((self._addr).uint, self.rs2_data)
# note: the reason we need 2 steps here is because python is serial and real logic is parallel
# registers data collection
_result = self._result
_pc = self._pc
_data_addr = self._addr
# work around for having not just instruction ram but data ram too
# instruction = self._controller.get_instruct_mem((self._addr).uint)
if self._IR_write:
instruction = self._controller.get_instruct_mem((self._pc).uint)
self.rs1_addr = self._current_instruction[-20:-15]
self.rs2_addr = self._current_instruction[-25:-20]
rs1 = self._register_file.get_data(self.rs1_addr)
rs2 = self._register_file.get_data(self.rs2_addr)
alu_result = self._alu_result
# register data storage
self._data_mem_adr = _data_addr
if self._write_to_register:
self._register_file.set_data(self.rd, _result)
if self._PC_write:
self._pc = _result
if self._IR_write:
self._pc_old = _pc
self._current_instruction = instruction
self.rs1_data = rs1
self.rs2_data = rs2
self._alu_result_old = alu_result
self._fsm_state = self.next_fsm_state
return 1 # flag for good
# how we are doing combinational logic is using properties with the datapath inside them TODO: BETTER WORDING
# work around for only calling data mem when its needed so as not to raise an error
@property
def _memory_result(self):
"""this the this output of the data memory when called"""
return self._controller.get_data_mem(self._data_mem_adr.uint)
@property
def rd(self):
"""this the rd value of the current instruction"""
return self._current_instruction[-12:-7]
######################## alu ########################
@property
def _alu_result(self):
"""this calls the alu class and plugs in the right info from the a and b muxes"""
if self._alu_a == None or self._alu_b == None:
None
return self._alu.calculate(self._alu_control, self._alu_a, self._alu_b)
####################### muxes #######################
@property
def _result(self):
"""this is the result mux
its value is set by self._result_slt
and it can have values of:
alu_result_old
alu_result
memory_result
imm"""
match(self._result_slt):
case 'alu_result_old':
return self._alu_result_old
case 'alu_result':
return self._alu_result
case 'memory_result':
return self._memory_result
case 'imm': # this was added for the lui types as a workaround for some last minute bugs
return self._imm
return None
@property
def _alu_a(self):
"""this is the alu a mux"""
match(self._alu_a_slt):
case 'pc':
return self._pc
case 'old pc':
return self._pc_old
case 'rs1':
return self.rs1_data
return None
@property
def _alu_b(self):
"""this is the alu b mux"""
match(self._alu_b_slt):
case 'imm' | 'immediate':
return self._imm
case 'four' | '4' | 4:
return BitArray(int=4, length=32)
case 'rs2':
return self.rs2_data
return None
@property
def _addr(self):
"""this is the addr mux
if self._addr_slt: it returns the _result mux
otherwise its the _pc reg"""
if self._addr_slt:
return self._result
return self._pc
def wire_states(self):
"""returns the states of the names wires in dict"""
out = {
"PC": self._pc
}
@property
def _imm(self): # return the imm of the current instruction
# get order of bits and iter though bits
order = IMM_DICT[self.current_op.bin]
imm = [self._current_instruction[index]
if index is not None else False for index in order]
b = BitArray(imm).int # make it signed
return BitArray(int=b, length=32) # and extend it to 32 bits
def _get_imm(self, instruction): # return the imm of the current instruction
# get order of bits and iter though bits
order = IMM_DICT[self.current_op.bin]
imm = [instruction[index]
if index is not None else False for index in order]
b = BitArray(imm).int # make it signed
return BitArray(int=b, length=32) # and extend it to 32 bits
@property
def instruction(self):
return self._current_instruction
def _memory_address(self):
self._alu_control = 'add'
self._alu_a_slt = 'rs1'
self._alu_b_slt = 'imm'
pass
def memory_read(self): # just grab the data nothing more
self._result_slt = 'alu_result_old'
self._addr_slt = True
return None
def memory_write_back(self): # take data and write it back to the register
self._result_slt = 'memory_result'
self._write_to_register = True
return None
def memory_write(self): # write data to data memory
self._result_slt = 'alu_result_old'
self._addr_slt = True
self._write_mem = True
return None
def execute_i(self):
self._alu_a_slt = 'rs1'
self._alu_b_slt = 'imm'
# workaround for some weird issues
code = self._current_instruction[-15:-11]
# if its the only i type that has cares about the bit in fucnt7
if code.startswith('0b101'):
code[3] = self._current_instruction[-31] # use the bit then
else:
code[3] = False # ignore the bit
self._alu_control = code.bin
pass
def execute_r(self):
self._alu_a_slt = 'rs1'
self._alu_b_slt = 'rs2'
code = self._current_instruction[-15:-11]
code[3] = self._current_instruction[-31] # always use the bit
self._alu_control = code.bin
pass
def execute_aui(self):
self._alu_a_slt = 'pc'
self._alu_b_slt = 'imm'
self._alu_control = 'add'
self._result_slt = "alu_result"
self._write_to_register = True
def branch(self):
rs1 = self.rs1_data
rs2 = self.rs2_data
branch = False
bcode = self._current_instruction[-15:-12]
match bcode.bin: # sort by branch code (sadly not using alu)
case FUNCT3_BEQ.bin:
branch = rs1 == rs2 # this is if the branch will return
case FUNCT3_BNE.bin:
branch = rs1 != rs2
case FUNCT3_BGE.bin:
branch = rs1.int >= rs2.int
case FUNCT3_BGEU.bin:
a = rs1.uint
b = rs2.uint
branch = a >= b
case FUNCT3_BLT.bin:
branch = rs1.int < rs2.int
case FUNCT3_BLTU.bin:
a = rs1.uint
b = rs2.uint
branch = a < b
if branch: # and do the branch
self._PC_write = True
self._result_slt = "alu_result_old"
return None
def jump_and_link_register(self):
self._PC_write = True
self._alu_a_slt = "rs1"
self._alu_b_slt = "imm"
self._alu_control = 'add'
self._result_slt = "alu_result"
return None
def alu_writeback(self): # write the data from the alu
self._PC_write = False
self._result_slt = "alu_result_old"
self._write_to_register = True
return None
def jalr_writeback(self): # write the data from the alu
self._PC_write = False
self._alu_a_slt = "old pc"
self._alu_b_slt = "4"
self._alu_control = 'add'
self._result_slt = "alu_result"
self._write_to_register = True
self.next_fsm_state = "Fetch"
return None
def jump_and_link(self):
self._PC_write = True
self._result_slt = "alu_result_old"
self._alu_a_slt = "old pc"
self._alu_b_slt = "4"
self._alu_control = 'add'
pass
class ALU():
"""
Class for All ALU functions. Operates very similarly to the actual
hardware. Each function is a method that takes in the two inputs and
returns the result.
"""
def __init__(self, inputs) -> None:
# map control codes to operations
self.alu_code_dict = {
'0000': self.add,
'0001': self.sub,
'0010': self.sll,
'0100': self.slt,
'0110': self.sltu,
'1000': self._xor,
'1010': self.srl,
'1011': self.sra,
'1100': self._or,
'1110': self._and,
'add': self.add,
'sub': self.sub,
'sll': self.sll,
'slt': self.slt,
'sltu': self.sltu,
'xor': self._xor,
'srl': self.srl,
'sra': self.sra,
'or': self._or,
'and': self._and,
}
def calculate(self, code, a, b): # and run the code from that list
"""
Takes in the code and the two inputs and returns the result of
the operation specified by the code.
"""
return (self.alu_code_dict[code](a, b))
# below are the functions the codes run
def add(self, a, b):
"""
Adds two numbers together and returns the result.
"""
try:
a = a.int
except AttributeError:
None
try:
b = b.int
except AttributeError:
None
return BitArray(int=a+b, length=32)
def sub(self, a, b):
"""
Subtracts two numbers and returns the result.
"""
try:
a = a.int
except AttributeError:
None
try:
b = b.int
except AttributeError:
None
return BitArray(int=a-b, length=32)
def slt(self, a, b):
"""
Returns 1 if a < b, 0 otherwise.
"""
try:
a = a.int
except AttributeError:
None
try:
b = b.int
except AttributeError:
None
return BitArray(int=a < b, length=32)
def sltu(self, a, b):
"""
Returns 1 if a < b, 0 otherwise.
"""
try:
a = a.uint
except AttributeError:
None
try:
b = b.uint
except AttributeError:
None
return BitArray(int=a < b, length=32)
def _or(self, a, b):
"""
Returns the bitwise or of the two inputs.
"""
return a | b
def _and(self, a, b):
"""
Returns the bitwise and of the two inputs.
"""
return a & b
def _xor(self, a, b):
"""
Returns the bitwise xor of the two inputs.
"""
return a ^ b
def sll(self, a, b):
"""
Shifts a left (logical) by b bits.
"""
try:
a = BitArray(a)
except AttributeError:
None
try:
b = b.uint
except AttributeError:
None
return a.__ilshift__(b)
def srl(self, a, b):
"""
Shifts a right (logical) by b bits.
"""
try:
a = a.uint
except AttributeError:
None
try:
b = b.uint
except AttributeError:
None
return BitArray(uint=a >> (b), length=32)
def sra(self, a, b):
"""
Shifts a right arithmetic by b bits.
"""
return BitArray(int=a.int//2**b.uint, length=32)