-
Notifications
You must be signed in to change notification settings - Fork 1
/
bleaching_analysis_optional_thresh.ijm
428 lines (351 loc) · 14.2 KB
/
bleaching_analysis_optional_thresh.ijm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//@ int(label="Channel for numerator", style = "spinner") Channel_Num
//@ int(label="Channel for denominator", style = "spinner") Channel_Denom
//@ int(label="Channel for transmitted light -- select 0 if none", style = "spinner") Channel_Trans
//@ string(label="Background and noise subtraction method", choices={"Blank image", "Select an image area","Fixed values","None"}, style="listBox") Background_Method
//@ string(label="Thresholding method", choices={"None","Default","Huang","Intermodes","IsoData","IJ_IsoData","Li","MaxEntropy","Mean","MinError","Minimum","Moments","Otsu","Percentile","RenyiEntropy","Shanbhag","Triangle","Yen"}, style="listBox") Thresh_Method
//@ File(label = "Output folder:", style = "directory") outputDir
// bleaching_analysis_optional_thresh.ijm
// ImageJ/Fiji macro by Theresa Swayne, Columbia University, 2023
// Measures intensity over time in thresholded images with 2 fluorescent channels
// Background and noise are both determined by a method selected by the user.
// Input: multi-channel time-lapse image (Z or single plane), and optional reference image for background subtraction
// Outputs:
// mask and ratio images
// timecourse measurements from numerator, denominator, and pixelwise ratio
// ROI set (if applicable), log of background and noise levels
// if no ROI is selected, the whole image will be measured
// subtracted images (if applicable)
// Usage: Open a time-lapse image. Run the macro.
// --- Setup ----
print("\\Clear"); // clears Log window
roiManager("reset");
run("Clear Results");
run("Set Measurements...", "area mean display redirect=None decimal=3");
run("Input/Output...", "jpeg=85 gif=-1 file=.csv copy_row save_column save_row");
// ---- Get image information ----
id = getImageID();
title = getTitle();
dotIndex = indexOf(title, ".");
basename = substring(title, 0, dotIndex);
getDimensions(width, height, channels, slices, frames);
print("Processing",title, "with basename",basename);
// ---- Prepare images ----
run("Split Channels");
numImage = "C"+Channel_Num+"-"+title;
denomImage = "C"+Channel_Denom+"-"+title;
print("Numerator is",numImage);
if (Channel_Trans != 0) {
transImage = "C"+Channel_Trans+"-"+title;
}
// ---- Background and noise handling ---
// Background values are subtracted from each channel before initial segmentation
// Noise values are used to threshold each channel after segmentation, before ratioing
// Noise, if measured, is estimated as the standard deviation of the background
if (Background_Method == "Blank image") {
numBG = 0;
denomBG = 0;
imgSubResults = subtractImage(Channel_Num, Channel_Denom, Channel_Trans);
numNoise = imgSubResults[0];
denomNoise = imgSubResults[1];
print("Blank numerator channel "+Channel_Num+" background StdDev",numNoise);
print("Blank denominator channel "+Channel_Denom+" background StdDev",denomNoise);
}
if (Background_Method == "Select an image area") { // interactive selection
print("Measuring user-selected area");
measBG = measureBackground(Channel_Num, Channel_Denom, Channel_Trans); // array containing preliminary values for background and noise
numBG = measBG[0];
denomBG = measBG[2];
print("Measured numerator channel "+Channel_Num+" background mean", numBG);
print("Measured denominator channel "+Channel_Denom+" background mean", denomBG);
numNoise = measBG[1];
denomNoise = measBG[3];
print("Measured numerator channel "+Channel_Num+" background StdDev",numNoise);
print("Measured denominator channel "+Channel_Denom+" background StdDev",denomNoise);
}
else if (Background_Method == "Fixed values") {
Dialog.create("Enter Fixed Background Values");
Dialog.addNumber("Numerator channel "+Channel_Num+" background", 0);
Dialog.addNumber("Denominator channel "+Channel_Denom+" background", 0);
Dialog.show();
numBG = Dialog.getNumber();
denomBG = Dialog.getNumber();
print("Entered numerator channel "+Channel_Num+" background", numBG);
print("Entered denominator channel "+Channel_Denom+" background", denomBG);
Dialog.create("Enter Fixed Noise Values");
Dialog.addNumber("Numerator channel "+Channel_Num+" noise", 1);
Dialog.addNumber("Denominator channel "+Channel_Denom+" noise", 1);
Dialog.show();
numNoise = Dialog.getNumber();
denomNoise = Dialog.getNumber();
print("Entered numerator channel "+Channel_Num+" noise", numNoise);
print("Entered denominator channel "+Channel_Denom+" noise", denomNoise);
}
else if (Background_Method == "None") {
numBG = 0;
denomBG = 0;
print("No background was subtracted");
numNoise = 1; // default noise value
denomNoise = 1;
print("No noise level was provided");
}
// subtract the previously determined background
selectWindow(numImage);
run("Select None");
run("Subtract...", "value="+numBG+" stack");
selectWindow(denomImage);
run("Select None");
run("Subtract...", "value="+denomBG+" stack");
// ---- Segmentation and ratioing ----
// is this a stack?
if (slices > 1) {
zstack = true;
print("Z stack will be analyzed as a sum projection");
// sum up all of the Z slices
selectWindow(numImage);
run("Z Project...", "projection=[Sum Slices] all");
selectWindow(numImage);
close();
selectWindow("SUM_"+numImage);
rename(numImage);
selectWindow(denomImage);
run("Z Project...", "projection=[Sum Slices] all");
selectWindow(denomImage);
close();
selectWindow("SUM_"+denomImage);
rename(denomImage);
}
else if (slices == 1) {
zstack = false;
}
// threshold on the sum of the 2 images
print("Summing the numerator and denominator");
imageCalculator("Add create 32-bit stack", numImage,denomImage); // still a stack because of time
selectWindow("Result of "+numImage);
rename("Sum");
// go to the first timepoint
selectWindow("Sum");
Stack.setFrame(1);
// threshold
print("Threshold used:",Thresh_Method);
if (Thresh_Method != "None") {
setAutoThreshold(Thresh_Method+" dark stack");
//setOption("BlackBackground", false);
run("Convert to Mask", "method=&Thresh_Method background=Dark black");
}
else {
setThreshold(0, 65535);
run("Convert to Mask", "background=Dark black");
}
// save the 8-bit mask, then divide by 255 to generate a 0,1 mask
selectWindow("Sum");
saveAs("Tiff", outputDir + File.separator + basename + "_mask.tif");
run("Divide...", "value=255 stack");
rename("Mask");
// apply the mask to each channel by multiplication
// (a 32-bit result is required so we can change the background to NaN later)
// Apply an additional threshold based on the noise level to eliminate erroneous ratios caused by low signal
print("Masking the images");
imageCalculator("Multiply create 32-bit stack", numImage, "Mask");
selectWindow("Result of "+numImage);
rename("Masked Num");
selectWindow("Masked Num");
setThreshold(numNoise, 1000000000000000000000000000000.0000); // this should ensure all mask pixels are selected
run("NaN Background", "stack");
imageCalculator("Multiply create 32-bit stack", denomImage, "Mask");
selectWindow("Result of "+denomImage);
rename("Masked Denom");
selectWindow("Masked Denom");
setThreshold(denomNoise, 1000000000000000000000000000000.0000); // this should ensure all mask pixels are selected
run("NaN Background", "stack");
// calculate the ratio image
imageCalculator("Divide create 32-bit stack", "Masked Num","Masked Denom");
selectWindow("Result of Masked Num");
rename("Ratio");
// ---- Select cells and measure ----
run("Set Measurements...", "area mean integrated display redirect=None decimal=4");
if (Channel_Trans != 0) {
transImage = "C"+Channel_Trans+"-"+title;
selectWindow(transImage);
}
else {
selectWindow(numImage);
}
setTool("freehand");
run("Enhance Contrast", "saturated=0.35");
waitForUser("Mark cells", "Draw ROIs and add to the ROI manager (press T after each),\nor open an ROI set.\nThen click OK");
// rename ROIs for easier interpretation of results table
n = roiManager("count");
if (n >= 1) {
for (i = 0; i < n; i++) {
roiManager("Select", i);
cellNum = i+1;
newName = "Cell_"+cellNum+"_ROI_1";
roiManager("Rename", newName);
}
}
else if (n == 0) {
print("Analyzing entire image");
run("Select All");
roiManager("Add");
roiManager("Select", 0);
roiManager("Rename", "ROI_1");
}
roiManager("deselect");
// save individual channel results
selectWindow("Masked Num");
rename(basename + "_C"+Channel_Num+"_Num"); // so the results will have the original filename attached
roiManager("deselect");
roiManager("Multi Measure");
selectWindow("Results");
saveAs("Results", outputDir + File.separator + basename + "_NumResults.csv");
run("Clear Results");
selectWindow("Masked Denom");
rename(basename + "_C"+Channel_Denom+"_Denom"); // so the results will have the original filename attached
roiManager("deselect");
roiManager("Multi Measure");
selectWindow("Results");
saveAs("Results", outputDir + File.separator + basename + "_DenomResults.csv");
run("Clear Results");
// save ratio image results
selectWindow("Ratio");
rename(basename + "_ratio"); // so the results will have the original filename attached
roiManager("deselect");
roiManager("Multi Measure"); // user sees dialog to choose rows/columns for output
// ---- Save output files ----
selectWindow(basename + "_ratio");
saveAs("Tiff", outputDir + File.separator + basename + "_ratio.tif");
roiManager("deselect");
roiManager("save", outputDir + File.separator + basename + "_ROIs.zip");
selectWindow("Results");
saveAs("Results", outputDir + File.separator + basename + "_Results.csv");
selectWindow("Log");
saveAs("text",outputDir + File.separator + basename + "_Log.txt");
// ---- Clean up ----
close("*"); // image windows
selectWindow("Log");
run("Close");
roiManager("reset");
run("Clear Results");
// ---- Helper functions ----
function measureBackground(Num, Denom, Trans) {
// Measures background from a user-specified ROI
// Returns the mean and standard deviation of stack background values
// (rounded to nearest integer) in numerator and denominator channels
if (Trans != 0) {
transImage = "C"+Trans+"-"+title;
selectWindow(transImage);
}
else {
selectWindow(numImage);
}
// get the ROI
run("Set Measurements...", "mean standard redirect=None decimal=2");
setTool("rectangle");
waitForUser("Mark background", "Draw a background area, then click OK");
// measure background in numerator channel
selectWindow(numImage);
run("Restore Selection"); // TODO: save this in the ROI manager
run("Measure Stack...");
numBGs = Table.getColumn("Mean");
numSDs = Table.getColumn("StdDev");
Array.getStatistics(numBGs, min, max, mean, stdDev);
numMeasBackground = round(mean);
Array.getStatistics(numSDs, min, max, mean, stdDev);
numMeasNoise = round(mean);
// measure background in denominator channel
run("Clear Results");
selectWindow(denomImage);
run("Restore Selection"); // TODO: save this in the ROI manager
run("Measure Stack...");
denomBGs = Table.getColumn("Mean");
denomSDs = Table.getColumn("StdDev");
Array.getStatistics(denomBGs, min, max, mean, stdDev);
denomMeasBackground = round(mean);
Array.getStatistics(denomSDs, min, max, mean, stdDev);
denomMeasNoise = round(mean);
measBGResults = newArray(numMeasBackground, numMeasNoise, denomMeasBackground, denomMeasNoise);
return measBGResults;
}
// measureBackground function
function subtractImage(Num, Denom, Trans) {
// Takes an input image and a user-supplied multichannel blank reference image.
// Calculates the noise in the reference image as the standard deviation of the pixel values (by channel).
// Subtracts the average of the reference stack from the input stack (by channel).
// Returns the corrected channels and the SD values
// get the blank reference image
showMessage("On the next dialog please open the blank image file");
refPath = File.openDialog("Select the blank image file"); // this window title may not appear on MacOS
open(refPath); // open the file
refName = File.getName(refPath);
refDotIndex = indexOf(refName, ".");
refBasename = substring(refName, 0, refDotIndex);
// write info to the log
print("Subtracting blank image",refName);
selectWindow(refName);
getDimensions(refwidth, refheight, refchannels, refslices, refframes);
run("Split Channels");
numRef = "C"+Num+"-"+refName;
denomRef = "C"+Denom+"-"+refName;
if (Trans != 0) {
transRef = "C"+Channel_Trans+"-"+refName;
}
// measure the standard deviation of each fluorescence channel in the stack
run("Set Measurements...", "mean standard redirect=None decimal=2");
// measure SD in reference image numerator channel
selectWindow(numRef);
run("Select All");
run("Measure Stack...");
numRefSDs = Table.getColumn("StdDev"); // each row is one slice of the stack
Array.getStatistics(numRefSDs, min, max, mean, stdDev);
numRefNoise = round(mean); // average of all the slice standard deviations
// measure SD in reference image denominator channel
run("Clear Results");
selectWindow(denomRef);
run("Select All");
run("Measure Stack...");
denomRefSDs = Table.getColumn("StdDev");
Array.getStatistics(denomRefSDs, min, max, mean, stdDev);
denomRefNoise = round(mean);
// make an average intensity projection, or use the original image if just one slice
if (refslices > 1) {
selectWindow(numRef);
run("Z Project...", "projection=[Average Intensity]");
selectWindow("AVG_"+numRef);
rename("Num_Reference");
selectWindow(denomRef);
run("Z Project...", "projection=[Average Intensity]");
selectWindow("AVG_"+denomRef);
rename("Denom_Reference");
}
else {
selectWindow(numRef);
rename("Num_Reference");
selectWindow(denomRef);
rename("Denom_Reference");
}
// subtract the averaged reference from the input image
// save a copy, and then restore the image name
print("Subtracting blank image from numerator");
imageCalculator("Subtract create 32-bit stack", numImage,"Num_Reference");
selectWindow(numImage);
close();
selectWindow("Result of " + numImage);
saveAs("Tiff", outputDir + File.separator + numImage + "_Num_sub.tif");
rename(numImage);
print("Subtracting blank image from denominator");
imageCalculator("Subtract create 32-bit stack", denomImage,"Denom_Reference");
selectWindow(denomImage);
close();
selectWindow("Result of "+denomImage);
saveAs("Tiff", outputDir + File.separator + denomImage + "_Denom_sub.tif");
rename(denomImage);
// clean up
selectWindow("Num_Reference");
close();
selectWindow("Denom_Reference");
close();
run("Clear Results");
imgSubResults = newArray(numRefNoise, denomRefNoise);
return imgSubResults;
}
// subtractImage function