You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I removed --prompt from the settings of run_shoe.sh and set values for --no_prompt and --image, and the quality of results were really bad. Details are as follows:
Did I set the parameter wrong? Or is there something in main.py that needs to be modified? Or is it a randomness issue in optimization?
When --no_prompt is set to True and --image is set to image path string in main.py, the loss code corresponding to 'local to global' and 'local to displacement' in the paper is not understood. Should I change this part?
The text was updated successfully, but these errors were encountered:
I removed --prompt from the settings of run_shoe.sh and set values for --no_prompt and --image, and the quality of results were really bad. Details are as follows:
case1
run_shoe.sh
python main.py --run branch --obj_path data/source_meshes/shoe.obj --output_dir results/demo/shoe/texture/brick --no_prompt --image data/target_texture/brick_texture.jpg --sigma 5.0 --clamp tanh --n_normaugs 4 --n_augs 1 --normmincrop 0.1 --normmaxcrop 0.1 --geoloss --colordepth 2 --normdepth 2 --frontview --frontview_std 4 --clipavg view --lr_decay 0.9 --clamp tanh --normclamp tanh --maxcrop 1.0 --save_render --seed 11 --n_iter 1500 --learning_rate 0.0005 --normal_learning_rate 0.0005 --background 1 1 1 --frontview_center 0.5 0.6283
brick_texture.jpg
result
case2
run_shoe.sh
python main.py --run branch --obj_path data/source_meshes/shoe.obj --output_dir results/demo/shoe/texture2/cactus --no_prompt --image data/target_texture/cactus_texture.jpg --sigma 5.0 --clamp tanh --n_normaugs 4 --n_augs 1 --normmincrop 0.1 --normmaxcrop 0.1 --geoloss --colordepth 2 --normdepth 2 --frontview --frontview_std 4 --clipavg view --lr_decay 0.9 --clamp tanh --normclamp tanh --maxcrop 1.0 --save_render --seed 11 --n_iter 1500 --learning_rate 0.0005 --normal_learning_rate 0.0005 --background 1 1 1 --frontview_center 0.5 0.6283
cactus_texture.jpg
result
Did I set the parameter wrong? Or is there something in main.py that needs to be modified? Or is it a randomness issue in optimization?
When --no_prompt is set to True and --image is set to image path string in main.py, the loss code corresponding to 'local to global' and 'local to displacement' in the paper is not understood. Should I change this part?
The text was updated successfully, but these errors were encountered: