-
Notifications
You must be signed in to change notification settings - Fork 252
/
Copy pathinfer.py
171 lines (136 loc) · 7.45 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# # Copyright (c) 2019-present, HuggingFace Inc.
# All rights reserved.
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import math
import json
import logging
import random
from argparse import ArgumentParser
from pprint import pformat
from itertools import chain
from tqdm import tqdm
import torch
import torch.nn.functional as F
from transformers import OpenAIGPTLMHeadModel, GPT2LMHeadModel, BertTokenizer
SPECIAL_TOKENS = ["[CLS]", "[SEP]", "[PAD]", "[speaker1]", "[speaker2]"]
def top_filtering(logits, top_k=0, top_p=0.0, threshold=-float('Inf'), filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k, top-p (nucleus) and/or threshold filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k: <=0: no filtering, >0: keep only top k tokens with highest probability.
top_p: <=0.0: no filtering, >0.0: keep only a subset S of candidates, where S is the smallest subset
whose total probability mass is greater than or equal to the threshold top_p.
In practice, we select the highest probability tokens whose cumulative probability mass exceeds
the threshold top_p.
threshold: a minimal threshold to keep logits
"""
assert logits.dim() == 1 # Only work for batch size 1 for now - could update but it would obfuscate a bit the code
top_k = min(top_k, logits.size(-1))
if top_k > 0:
# Remove all tokens with a probability less than the last token in the top-k tokens
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
# Compute cumulative probabilities of sorted tokens
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probabilities = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probabilities > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# Back to unsorted indices and set them to -infinity
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
indices_to_remove = logits < threshold
logits[indices_to_remove] = filter_value
return logits
def build_input_from_segments(history, reply, tokenizer, with_eos=True):
""" Build a sequence of input from 3 segments: persona, history and last reply """
bos, eos, pad, speaker1, speaker2 = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS)
sequence = [[bos]] + history + [reply + ([eos] if with_eos else [])]
sequence = [sequence[0]] + [[speaker2 if i % 2 else speaker1] + s for i, s in enumerate(sequence[1:])]
instance = {}
instance["input_ids"] = list(chain(*sequence))
instance["token_type_ids"] = [bos] + [speaker2 if i % 2 else speaker1 for i, s in enumerate(sequence[1:])
for _ in s]
return instance, sequence
def test_data(args):
with open(args.datapath, "r", encoding="utf-8") as f:
dataset = json.loads(f.read())
if isinstance(dataset, dict):
dataset = dataset["test"]
return dataset
def sample_sequence(history, tokenizer, model, args, current_output=None):
special_tokens_ids = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS)
if current_output is None:
current_output = []
for i in range(args.max_length):
instance, sequence = build_input_from_segments(history, current_output, tokenizer, with_eos=False)
input_ids = torch.tensor(instance["input_ids"], dtype=torch.long, device=args.device).unsqueeze(0)
token_type_ids = torch.tensor(instance["token_type_ids"], dtype=torch.long, device=args.device).unsqueeze(0)
logits, *_ = model(input_ids, token_type_ids=token_type_ids)
logits = logits[0, -1, :] / args.temperature
logits = top_filtering(logits, top_k=args.top_k, top_p=args.top_p)
probs = F.softmax(logits, dim=-1)
prev = torch.topk(probs, 1)[1] if args.no_sample else torch.multinomial(probs, 1)
if i < args.min_length and prev.item() in special_tokens_ids:
while prev.item() in special_tokens_ids:
prev = torch.multinomial(probs, num_samples=1)
if prev.item() in special_tokens_ids:
break
current_output.append(prev.item())
return current_output
def main():
parser = ArgumentParser()
parser.add_argument('--gpt2', action='store_true', help="use gpt2")
parser.add_argument("--datapath", type=str, default="", help="Path of the dataset.")
parser.add_argument("--out_path", type=str, default="", help="Path of response generated.")
parser.add_argument("--model_checkpoint", type=str, default="", help="Path, url or short name of the model")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
help="Device (cuda or cpu)")
parser.add_argument("--no_sample", action='store_true', help="Set to use greedy decoding instead of sampling")
parser.add_argument("--max_length", type=int, default=30, help="Maximum length of the output utterances")
parser.add_argument("--min_length", type=int, default=1, help="Minimum length of the output utterances")
parser.add_argument("--seed", type=int, default=42, help="Seed")
parser.add_argument("--temperature", type=float, default=1, help="Sampling softmax temperature")
parser.add_argument("--top_k", type=int, default=0, help="Filter top-k tokens before sampling (<=0: no filtering)")
parser.add_argument("--top_p", type=float, default=0.0,
help="Nucleus filtering (top-p) before sampling (<=0.0: no filtering)")
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__file__)
logger.info(pformat(args))
if args.model_checkpoint == "":
logging.error("Checkpoint needed!")
return
random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
logger.info("Get pretrained model and tokenizer")
tokenizer_class = BertTokenizer
model_class = OpenAIGPTLMHeadModel if not args.gpt2 else GPT2LMHeadModel
tokenizer = tokenizer_class.from_pretrained(args.model_checkpoint, do_lower_case=True)
model = model_class.from_pretrained(args.model_checkpoint)
model.to(args.device)
model.eval()
def tokenize(obj):
if isinstance(obj, str):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
if isinstance(obj, dict):
return dict((n, tokenize(o)) for n, o in obj.items())
return list(tokenize(o) for o in obj)
dataset = test_data(args)
predictions = []
for instance in tqdm(dataset, mininterval=1):
history = tokenize(instance[:-1])
with torch.no_grad():
out_ids = sample_sequence(history, tokenizer, model, args)
out_text = tokenizer.decode(out_ids, skip_special_tokens=True)
predictions.append(out_text)
with open(args.out_path, 'w', encoding="UTF-8") as f:
f.write("\n".join(predictions))
if __name__ == "__main__":
main()