forked from BenLangmead/bowtie
-
Notifications
You must be signed in to change notification settings - Fork 0
/
search_seeded_phase3.c
144 lines (140 loc) · 4.28 KB
/
search_seeded_phase3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
* This is a fragment, included from multiple places in ebwt_search.cpp.
* It implements the logic of the third phase of the seeded, quality-
* aware search routine. It is implemented as a code fragment so that
* it can be reused in both the half-index-in-memory and full-index-in-
* memory situations.
*/
{
if(!norc) {
params.setFw(false);
btr3.setReportExacts(true);
btr3.setQuery(patsrc->bufa());
// Get all partial alignments for this read's reverse
// complement
pals.clear();
if(pamRc != NULL && pamRc->size() > 0) {
// We can get away with an unsynchronized call because there
// are no writers for pamRc in this phase
pamRc->getPartialsUnsync(patid, pals);
pamRc->clear(patid);
assert_eq(0, pamRc->size());
}
bool done = false;
if(pals.size() > 0) {
// Partial alignments exist - extend them
// Set up seed bounds
if(qs < s) {
btr3.setOffs(0, 0, qs, qs, qs, qs);
} else {
btr3.setOffs(0, 0, s, s, s, s);
}
for(size_t i = 0; i < pals.size(); i++) {
seqan::clear(muts);
uint8_t oldQuals =
PartialAlignmentManager::toMutsString(
pals[i], patRc, qualRev, muts, !noMaqRound);
// Set the backtracking thresholds appropriately
// Now begin the backtracking, treating the first
// 24 bases as unrevisitable
ASSERT_ONLY(String<Dna5> tmp = patRc);
btr3.setMuts(&muts);
done = btr3.backtrack(oldQuals);
btr3.setMuts(NULL);
assert_eq(tmp, patRc); // assert mutations were undone
if(done) {
// The reverse complement hit, so we're done with this
// read
DONEMASK_SET(patid);
// Got a hit; stop processing partial
// alignments
break;
}
} // Loop over partial alignments
}
seqan::clear(muts);
// Case 4R yielded a hit continue to next pattern
if(done) continue;
// If we're in two-mismatch mode, then now is the time to
// try the final case that might apply to the reverse
// complement pattern: 1 mismatch in each of the 3' and 5'
// halves of the seed.
//bool gaveUp = false;
if(seedMms >= 2) {
btr23.setQuery(patsrc->bufa());
// Set up special seed bounds
if(qs < s) {
btr23.setOffs(qs5, qs,
0, // unrevOff
(seedMms <= 2)? qs5 : 0, // 1revOff
(seedMms < 3 )? qs : qs5, // 2revOff
qs); // 3revOff
} else {
btr23.setOffs(s5, s,
0, // unrevOff
(seedMms <= 2)? s5 : 0, // 1revOff
(seedMms < 3 )? s : s5, // 2revOff
s); // 3revOff
}
done = btr23.backtrack();
//if(btr23.numBacktracks() == btr23.maxBacktracks()) {
// gaveUp = true;
//}
if(done) {
DONEMASK_SET(patid);
btr23.resetNumBacktracks();
continue;
}
btr23.resetNumBacktracks();
}
}
if(nofw) { // no more 1-mm-in-seed hits are possible
//DONEMASK_SET(patid);
continue;
}
// If we reach here, then cases 1F, 2F, 3F, 1R, 2R, 3R and
// 4R have been eliminated leaving only 4F.
params.setFw(true); // looking at forward strand
btf3.setQuery(patsrc->bufa());
btf3.setQlen(seedLen); // just look at the seed
// Set up seed bounds
if(qs < s) {
btf3.setOffs(0, 0,
qs3,
(seedMms > 1)? qs3 : qs,
(seedMms > 2)? qs3 : qs,
(seedMms > 3)? qs3 : qs);
} else {
btf3.setOffs(0, 0,
s3,
(seedMms > 1)? s3 : s,
(seedMms > 2)? s3 : s,
(seedMms > 3)? s3 : s);
}
// Do a 12/24 seedling backtrack on the forward read
// using the normal index. This will find seedlings
// for case 4F
btf3.backtrack();
#ifndef NDEBUG
vector<PartialAlignment> partials;
pamFw->getPartials(patid, partials);
for(size_t i = 0; i < partials.size(); i++) {
uint32_t pos0 = partials[i].entry.pos0;
assert_lt(pos0, s5);
uint8_t oldChar = (uint8_t)patFw[pos0];
assert_neq(oldChar, partials[i].entry.char0);
if(partials[i].entry.pos1 != 0xffff) {
uint32_t pos1 = partials[i].entry.pos1;
assert_lt(pos1, s5);
oldChar = (uint8_t)patFw[pos1];
assert_neq(oldChar, partials[i].entry.char1);
if(partials[i].entry.pos2 != 0xffff) {
uint32_t pos2 = partials[i].entry.pos2;
assert_lt(pos2, s5);
oldChar = (uint8_t)patFw[pos2];
assert_neq(oldChar, partials[i].entry.char2);
}
}
}
#endif
}