-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
207 lines (184 loc) · 8.11 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import time
import random
import logging
import torch
import pynvml
import argparse
import numpy as np
import pandas as pd
from models.AMIO import AMIO
from trains.ATIO import ATIO
from data.load_data import MMDataLoader
from config.config_tune import ConfigTune
from config.config_regression import ConfigRegression
from utils.functions import assign_gpu, count_parameters, calculate_AUILC
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def set_log(args):
tune = 'tune' if args.is_tune else 'uniform'
log_file_path = f'results/logs/{args.modelName}-{args.augment}-{args.datasetName}-{tune}.log'
if not os.path.exists(os.path.dirname(log_file_path)):
os.makedirs(os.path.dirname(log_file_path))
# set logging
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
for ph in logger.handlers:
logger.removeHandler(ph)
# add FileHandler to log file
formatter_file = logging.Formatter(
'%(asctime)s:%(levelname)s:%(message)s', datefmt='%Y-%m-%d %H:%M:%S')
fh = logging.FileHandler(log_file_path)
fh.setLevel(logging.DEBUG)
fh.setFormatter(formatter_file)
logger.addHandler(fh)
return logger
def run(args):
if args.is_tune:
args.model_save_path = os.path.join(args.model_save_dir, 'tune',
f'{args.modelName}-{args.datasetName}-{args.augment}-{args.augment_rate}-{args.seed}.pth')
else:
args.model_save_path = os.path.join(args.model_save_dir, 'normals',
f'{args.modelName}-{args.datasetName}-{args.augment}-{args.augment_rate}-{args.seed}.pth')
if not os.path.exists(os.path.dirname(args.model_save_path)):
os.makedirs(os.path.dirname(args.model_save_path))
# indicate used gpu
args.device = assign_gpu(args.gpu_ids)
device = args.device
# load data and models
dataloader = MMDataLoader(args)
setup_seed(args.seed)
model = AMIO(args).to(device)
logger.info(f'The model has {count_parameters(model)} trainable parameters')
atio = ATIO().getTrain(args)
# do train
atio.do_train(model, dataloader)
# load pretrained model
assert os.path.exists(args.model_save_path)
model.load_state_dict(torch.load(args.model_save_path))
model.to(device)
# do test
if args.is_tune:
results = ATIO.do_test(model, dataloader['test'], args)
else:
results = ATIO.do_test(model, dataloader['test'], args)
return results
def run_tune(args, tune_times=50):
args.res_save_dir = os.path.join(args.res_save_dir, 'tunes')
init_args = args
has_debuged = [] # save used paras
save_file_path = os.path.join(args.res_save_dir,
f'{args.datasetName}-{args.modelName}-{args.augment}-tune.csv')
if not os.path.exists(os.path.dirname(save_file_path)):
os.makedirs(os.path.dirname(save_file_path))
for i in range(tune_times):
args = init_args
config = ConfigTune(args)
args = config.get_config()
# print debugging params
logger.info("#"*40 + '%s with %s - (%d/%d)' %
(args.modelName, args.augment, i+1, tune_times) + '#'*40)
for k, v in args.items():
if k in args.d_paras:
logger.info(k + ':' + str(v))
logger.info("#"*90)
logger.info('Start running %s with %s...' % (args.modelName, args.augment))
# restore existed paras
if i == 0 and os.path.exists(save_file_path):
df = pd.read_csv(save_file_path)
for i in range(len(df)):
has_debuged.append([df.loc[i, k] for k in args.d_paras])
# check paras
print(args.d_paras)
cur_paras = [args[v] for v in args.d_paras]
if cur_paras in has_debuged:
logger.info('These paras have been used!')
time.sleep(3)
continue
has_debuged.append(cur_paras)
results = []
for j, seed in enumerate([1111, 1112, 1113]):
args.cur_time = j + 1
# setup_seed(seed)
args.seed = seed
results.append(run(args))
# save results to csv
logger.info('Start saving results...')
if os.path.exists(save_file_path):
df = pd.read_csv(save_file_path)
else:
df = pd.DataFrame(
columns=[k for k in args.d_paras] + [k for k in results[0].keys()])
# stat results
tmp = [args[c] for c in args.d_paras]
for col in results[0].keys():
values = [r[col] for r in results]
mean = round(np.mean(values)*100, 2)
std = round(np.std(values)*100, 2)
tmp.append((mean, std))
df.loc[len(df)] = tmp
df.to_csv(save_file_path, index=None)
logger.info('Results are saved to %s...' % (save_file_path))
def run_normal(args):
args.res_save_dir = os.path.join(args.res_save_dir, 'normals')
init_args = args
model_results = []
seeds = args.seeds
# run results
for i, seed in enumerate(seeds):
args = init_args
# load config
config = ConfigRegression(args)
args = config.get_config()
args.seed = seed
logger.info('Start running %s with %s...' % (args.modelName, args.augment))
logger.info(args)
# runnning
args.cur_time = i+1
result = run(args)
result_cur = dict()
for k in list(result[list(result.keys())[0]].keys()):
result_cur[k] = calculate_AUILC([result[v][k] for v in list(result.keys())])
model_results.append(result_cur)
criterions = list(model_results[0].keys())
save_path = os.path.join(args.res_save_dir, f'{args.datasetName}-{args.test_mode}.csv')
if not os.path.exists(args.res_save_dir):
os.makedirs(args.res_save_dir)
if os.path.exists(save_path):
df = pd.read_csv(save_path)
else:
df = pd.DataFrame(columns=["Model", "Augment"] + criterions)
res = [args.modelName, args.augment]
for c in criterions:
values = [r[c] for r in model_results]
mean = round(np.mean(values)*100, 2)
std = round(np.std(values)*100, 2)
res.append((mean, std))
df.loc[len(df)] = res
df.to_csv(save_path, index=None)
logger.info('Results are added to %s...' % (save_path))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--need_task_scheduling', type=bool, default=False, help='use the task scheduling module.')
parser.add_argument('--is_tune', default=False, action='store_true', help='tune parameters ?')
parser.add_argument('--modelName', type=str, default='niat', help='support niat/niat_wo_da/niat_wo_dis_rec/niat_wo_dis/niat_wo_rec')
parser.add_argument('--datasetName', type=str, default='mosi', help='support mosi/mosei')
parser.add_argument('--augment', type=str, default='method_one', help='support none/method_one/method_two/method_three')
parser.add_argument('--augment_rate', type=int, default=0.2, help='0.1, 0.2, 0.4')
parser.add_argument('--test_mode', type=str, default='frame_drop', help='support frame_drop/block_drop/random_drop')
parser.add_argument('--num_workers', type=int, default=0, help='num workers of loading data')
parser.add_argument('--model_save_dir', type=str, default='results/saved_models', help='path to save results.')
parser.add_argument('--res_save_dir', type=str, default='results/results', help='path to save results.')
parser.add_argument('--gpu_ids', type=list, default=[], help='indicates the gpus will be used. If none, the most-free gpu will be used!')
parser.add_argument('--test_seed_list', type=list, default=[1, 11, 111, 1111, 11111], help='indicates the seed for test period imperfect construction')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
args.seeds = [1111,1112,1113] # 3种子
logger = set_log(args)
run_tune(args, tune_times=50) if args.is_tune else run_normal(args)