-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate.R
99 lines (75 loc) · 2.6 KB
/
template.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
sparse_data <- SPARSE_DATA
model <- "MODEL"
seed <- SEED
n_numeric <- N_NUMERIC
n_counts <- N_COUNTS
n_rows <- N_ROWS
file_name <- glue::glue("{sparse_data}_{model}_{seed}_{n_numeric}_{n_counts}_{n_rows}.RData")
## Packages --------------------------------------------------------------------
suppressPackageStartupMessages({
library(tidymodels)
})
## Simulate data ---------------------------------------------------------------
create_dummy <- function(n) {
n_non_zero <- rpois(1, n / 1000) + 1
positions <- sort(sample(n, n_non_zero))
values <- rep(1, n_non_zero)
sparsevctrs::sparse_integer(values, positions, length = n)
}
create_data <- function(n_rows, n_dense, n_sparse) {
outcome <- rnorm(n_rows)
dense_columns <- map(seq_len(n_dense), ~rnorm(n = n_rows))
names(dense_columns) <- paste0("d", seq_len(n_dense))
sparse_columns <- map(seq_len(n_sparse), ~create_dummy(n = n_rows))
names(sparse_columns) <- paste0("s", seq_len(n_sparse))
bind_cols(outcome = outcome, dense_columns, sparse_columns)
}
materialize_data <- function(data) {
for (i in seq_along(data)) {
data[[i]] <- data[[i]][]
}
data
}
set.seed(seed)
data <- create_data(n_rows, n_numeric, n_counts)
if (!sparse_data) {
data <- materialize_data(data)
}
## Specify model ---------------------------------------------------------------
rec_spec <- recipe(outcome ~ ., data = data)
if (model == "xgboost") {
mod_spec <- boost_tree(mode = "regression", engine = "xgboost")
} else if (model == "glmnet") {
mod_spec <- linear_reg(mode = "regression", engine = "glmnet", penalty = 0)
} else if (model == "ranger") {
mod_spec <- rand_forest(mode = "regression", engine = "ranger")
} else if (model == "LiblineaR") {
mod_spec <- svm_linear(mode = "regression", engine = "LiblineaR")
}
wf_spec <- workflow(rec_spec, mod_spec)
## model fit -------------------------------------------------------------------
mem_alloc <- bench::bench_memory(
time <- system.time(
wf_fit <- fit(wf_spec, data)
)
)
## Model performance -----------------------------------------------------------
preds <- predict(wf_fit, data)
rmse_value <- rmse_vec(preds$.pred, data$outcome)
## Session info ----------------------------------------------------------------
sessioninfo::session_info()
# Save results -----------------------------------------------------------------
readr::write_rds(
list(
sparse_data = sparse_data,
model = model,
n_numeric = n_numeric,
n_counts = n_counts,
n_rows = n_rows,
seed = seed,
time = time[["elapsed"]],
rmse = rmse_value,
mem_alloc = mem_alloc$mem_alloc
),
file = file_name
)