Skip to content

Latest commit

 

History

History
89 lines (71 loc) · 2.24 KB

README.md

File metadata and controls

89 lines (71 loc) · 2.24 KB

Face Recognition API

Tools

Directory structure

This is how the project directory is structured:

├── app
│   ├── config.py
│   ├── main.py
│   └── utils.py
│   ├── data    # Database - Folder of images
│   │   ├── *.[jpg | jpeg]
|
├── query   # Query - Folder of images need to find id
│   ├── *.[jpg | jpeg]
|
├── docker-compose.yml
├── docker_build.sh
├── docker_run_it_test.sh
├── docker_run_server.sh
├── requirements.txt
└── uvicorn_run.sh
  • data: "database" which contains all users image uniquely by their id/name.

  • query: "query" which contains all images need to find identity base on the simmilarity between it with the image in database

  • I use docker volume to manage persistent data instead of using disk.

Model configuration

  • Face recognition model includes 2 modules: face detection and face recognition.

  • For editting detector and recognizer configuration, see config.py for your specific configuration. Otherwise leaves as default.

Run

  1. Install dependencies
pip install -r requirements.txt
  1. Create ./app/data and ./query as directory structure above.

  2. Run the server

uvicorn app.main:app --host 0.0.0.0 --port 80
  • Add --reload flag to enable live mode.
  • Go to localhost:{port}/docs for Swagger UI, check document for more information.

Docker

Directory structure in docker container:

├── /app
│   ├── app
│   │   ├── config.py
│   │   ├── main.py
│   │   ├── utils.py
|   |
│   ├── data  # Database - Folder of images
│   │   ├── *.[jpg | jpeg]
|   |
│   ├── query  # Query - Folder of images need to find id
│   │   ├── *.[jpg | jpeg]
|   |
  1. Run the service
docker compose up --build -d
  1. Run manually

Build the image:

bash docker_build.sh

Run the container

bash docker_run_server.sh