forked from salesforce/BLIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_nocaps.py
118 lines (91 loc) · 4.15 KB
/
eval_nocaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
'''
* Copyright (c) 2022, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
* By Junnan Li
'''
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from models.blip import blip_decoder
import utils
from data import create_dataset, create_sampler, create_loader
from data.utils import save_result
@torch.no_grad()
def evaluate(model, data_loader, device, config):
# evaluate
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Evaluation:'
print_freq = 10
result = []
for image, image_id in metric_logger.log_every(data_loader, print_freq, header):
image = image.to(device)
captions = model.generate(image, sample=False, num_beams=config['num_beams'], max_length=config['max_length'],
min_length=config['min_length'], repetition_penalty=1.1)
for caption, img_id in zip(captions, image_id):
result.append({"image_id": img_id.item(), "caption": caption})
return result
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Dataset ####
print("Creating captioning dataset")
val_dataset, test_dataset = create_dataset('nocaps', config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler([val_dataset,test_dataset], [False,False], num_tasks, global_rank)
else:
samplers = [None,None]
val_loader, test_loader = create_loader([val_dataset, test_dataset],samplers,
batch_size=[config['batch_size']]*2,num_workers=[4,4],
is_trains=[False, False], collate_fns=[None,None])
#### Model ####
print("Creating model")
model = blip_decoder(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'],
prompt=config['prompt'])
model = model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
val_result = evaluate(model_without_ddp, val_loader, device, config)
val_result_file = save_result(val_result, args.result_dir, 'val', remove_duplicate='image_id')
test_result = evaluate(model_without_ddp, test_loader, device, config)
test_result_file = save_result(test_result, args.result_dir, 'test', remove_duplicate='image_id')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/nocaps.yaml')
parser.add_argument('--output_dir', default='output/NoCaps')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)