-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
124 lines (98 loc) · 4.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold, StratifiedKFold
from sklearn import preprocessing
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.utils import to_categorical
from keras.models import load_model
from sklearn.metrics import confusion_matrix
from keras import optimizers
FILENAME = 'dwt.csv'
SEED = 200
def save_model(model, path,filename):
filename = os.path.join(path,filename + '.h5')
model.save(filename)
def encode_text_index(df, name):
"""
Label Encoding using sklearn.preporcessing. Transforms labels into integers i.e: [a, b, c] => [1, 2, 3]
df: pandas.DataFrame
name: string
"""
le = preprocessing.LabelEncoder()
df[name] = le.fit_transform(df[name])
return le.classes_
def prepare_data(path: str):
# Reads data from file, and splits it into training and testing data
dataset = pd.read_csv(FILENAME, sep=',', decimal=',')
print("The last column is {0}".format(dataset.columns[-1]))
last_column_name = dataset.columns[-1]
x_data, y_data = to_xy(dataset, last_column_name)
return train_test_split(x_data,y_data,test_size=0.25,random_state=47)
def get_data_without_encoding(path: str):
# Reads data from file, and splits it into training and testing data
dataset = pd.read_csv(FILENAME, sep=',', decimal=',')
print("The last column is {0}".format(dataset.columns[-1]))
last_column_name = dataset.columns[-1]
# x_data, y_data = to_xy(dataset, last_column_name)
# trainX, x_test, trainY, y_test = train_test_split(x_data,y_data,test_size=0.25,random_state=47)
return dataset.to_numpy()[:,0 :dataset.shape[1] - 1], dataset.to_numpy()[:,-1]
def train_with_cross_validation(model_function,X, y, epochs=10, cv=3, batch_size=16):
cross_validation_model = KerasClassifier(build_fn=model_function, epochs=epochs, batch_size=batch_size, verbose=1)
print(cross_val_score(cross_validation_model, X, y, cv=cv))
def fit_model(model, trainX, trainY,batch_size=16, epochs=10, validation_split=0.20, k_fold=3):
Adam=optimizers.Adam(lr=0.1, beta_1=0.9, beta_2=0.99, epsilon=1e-08, decay=0.0, amsgrad=False)
model.compile(loss='mean_squared_error', optimizer='Adam', metrics=['acc'])
scores=model.fit(trainX, trainY, epochs=epochs,batch_size=batch_size,verbose=0, validation_split=validation_split)
return model
def evalute_model(model, testX, testY, run_ensamble=True):
print("EVALUATING MODEL: {0}".format(model.name))
if(run_ensamble):
Adam=optimizers.Adam(lr=0.5, beta_1=0.9, beta_2=0.999, epsilon=1e-06, decay=0.0, amsgrad=False)
model.compile(loss='mean_squared_error', optimizer='Adam', metrics=['mae','acc'])
scores = model.evaluate(testX, testY, verbose = 2)
print(model.metrics_names)
return scores
def generate_fold(X, Y, k=3):
folds = list(KFold(n_splits=k, shuffle=True, random_state=1).split(X, Y))
return folds
def get_models(folder=''):
if(folder == ''):
folder = '.'
else:
folder = folder + '/'
models = [f for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f)) and f.endswith(".h5")]
return models
def load_models(models, path="models"):
changed_models = []
for i in range(len(models)):
model=load_model(os.path.join(path,models[i]))
import pdb; pdb.set_trace()
changed_models.append(model)
return changed_models
def encode_text_index(df, name):
le = preprocessing.LabelEncoder()
df[name] = le.fit_transform(df[name])
return le.classes_
# Transform data to fit the format acceptable by Keras model
def to_xy(df, target):
result = []
for x in df.columns:
if x != target:
result.append(x)
# find out the type of the target column. Is it really this hard? :(
target_type = df[target].dtypes
target_type = target_type[0] if hasattr(target_type, '__iter__') else target_type
# Encode to int for classification, float otherwise. TensorFlow likes 32 bits.
if target_type in (np.int64, np.int32):
# Classification
dummies = pd.get_dummies(df[target])
return df.as_matrix(result).astype(np.float32), dummies.as_matrix().astype(np.float32)
else:
# Regression
return df.as_matrix(result).astype(np.float32), df.as_matrix([target]).astype(np.float32)