Skip to content

Latest commit

 

History

History
36 lines (21 loc) · 1 KB

triangle.md

File metadata and controls

36 lines (21 loc) · 1 KB

The Right Triangle

Base Geometry

Let the right triangle hypothenuse be aligned with the coordinate system x-axis. The vector loop closure equation running counter-clockwise then reads

$$a{\bold e}\alpha + b\tilde{\bold e}\alpha + c{\bold e}_x = \bold 0$$ (1)

with

$${\bold e}\alpha = \begin{pmatrix}\cos\alpha\ \sin\alpha\end{pmatrix} \quad and \quad \tilde{\bold e}\alpha = \begin{pmatrix}-\sin\alpha\ \cos\alpha\end{pmatrix}$$

Resolving for the hypothenuse part $c{\bold e}_x$ in the loop closure equation (1)

$$-c{\bold e}x = a{\bold e}\alpha + b\tilde{\bold e}_\alpha$$

and squaring

finally results in the Pythagorean theorem (2)

$$c^2 = a^2 + b^2$$ (2)

More Triangle Stuff

Introducing the hypothenuse segments $p={\bold a}\cdot{\bold e}_x$ and $q={\bold b}\cdot{\bold e}_x$, we can further obtain the following useful formulas.

segment p segment q height h area
$cp = a^2$ $cq = b^2$ $pq = h^2$ $ab = ch$