forked from naosense/miles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
313 lines (285 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# -*- coding: utf-8 -*-
import calendar
import math
import sys
from datetime import datetime
from typing import Callable, Optional, TypeVar
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import matplotlib.ticker as tick
from matplotlib.offsetbox import AnnotationBbox, OffsetImage
RUNNER = "RealTiny656"
T = TypeVar("T")
K = TypeVar("K")
def plot_running() -> None:
with plt.xkcd():
from matplotlib import patheffects
plt.rcParams.update({
'path.effects': [ patheffects.withStroke(linewidth=4, foreground="#222222")],
'figure.facecolor': '#222222',
'axes.edgecolor': 'w',
})
fig, ax = plt.subplots(figsize=(8, 5), constrained_layout=True)
ax.spines[["top", "right"]].set_visible(False)
locator = mdates.AutoDateLocator(minticks=3, maxticks=7)
formatter = mdates.ConciseDateFormatter(locator)
ax.set_facecolor("#222222")
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.tick_params(axis="both", which="major", labelsize="small", length=5, color="w", labelcolor="w")
ax.tick_params(axis="both", which="minor", labelsize="small", length=5, color="w", labelcolor="w")
ax.set_title("Running is not a sport for health, it is a way of life!", color="w")
dts, accs, distances, hearts, paces = get_running_data()
ax.plot(dts, accs, color="#d62728")
ax2 = plt.axes([0.1, 0.80, 0.3, 0.1], facecolor="w")
ax2.set_facecolor("#222222")
ax2.boxplot(
hearts,
tick_labels=["H"],
vert=False,
showfliers=False,
meanline=True,
showmeans=True,
widths=0.25,
boxprops=dict(color="w"),
capprops=dict(color="w"),
whiskerprops=dict(color="w"),
)
ax2.spines[["top", "right", "left", "bottom"]].set_visible(False)
ax2.tick_params(axis="x", which="major", labelsize="xx-small", length=2, color="w", labelcolor="w")
ax2.tick_params(axis="y", which="major", labelsize="xx-small", length=0, color="w", labelcolor="w")
ax3 = plt.axes([0.1, 0.65, 0.3, 0.1])
ax3.set_facecolor("#222222")
ax3.boxplot(
[mins * 60 + secs for (mins, secs) in paces],
labels=["P"],
vert=False,
showfliers=False,
meanline=True,
showmeans=True,
widths=0.25,
boxprops=dict(color="w"),
capprops=dict(color="w"),
whiskerprops=dict(color="w"),
)
ax3.spines[["top", "right", "left", "bottom"]].set_visible(False)
ax3.tick_params(axis="x", which="major", labelsize="xx-small", length=2, color="w", labelcolor="w")
ax3.tick_params(axis="y", which="major", labelsize="xx-small", length=0, color="w", labelcolor="w")
ax3.xaxis.set_major_locator(tick.MaxNLocator(6))
ax3.xaxis.set_major_formatter(tick.FuncFormatter(pace_label_fmt))
attendance_all, attendance_this_year = tuple(
map(make_circular, get_attendance(dts))
)
feature = make_circular(
[
"Jan",
"",
"",
"Apr",
"",
"",
"Jul",
"",
"",
"Oct",
"",
"",
]
)
angles_deg = make_circular([a for a in range(0, 360, 30)])
angles_rad = make_circular([a * math.pi / 180 for a in range(0, 360, 30)])
ax4 = plt.axes([0.1, 0.3, 0.25, 0.25], polar=True)
ax4.set_facecolor("#222222")
ax4.plot(angles_rad, attendance_all, "-", linewidth=1, color="#ff7f0e")
ax4.fill(angles_rad, attendance_all, alpha=0.15, zorder=2, color="#ff7f0e")
ax4.plot(angles_rad, attendance_this_year, "-", linewidth=1, color="#2ca02c")
ax4.fill(
angles_rad, attendance_this_year, alpha=0.15, zorder=3, color="#2ca02c"
)
ax4.spines["polar"].set_linestyle("--")
ax4.spines["polar"].set_linewidth(0.5)
ax4.spines["polar"].set_color("grey")
ax4.tick_params(axis="x", which="major", labelsize="xx-small", length=0, color="w", labelcolor="w")
ax4.tick_params(axis="y", which="major", labelsize="xx-small", length=0, color="w", labelcolor="w")
ax4.set_thetagrids(angles_deg, feature)
ax4.set_yticks([20, 40, 60, 80, 100])
ax4.set_yticklabels(["", "", "", "", "100%"])
ax4.set_ylim(0, 100)
ax4.grid(visible=True, lw=0.5, ls="--")
years = dts[-1].year - dts[0].year + 1
this_year = datetime.now().year
distance_this_year = sum(
[distances[i] for i, dt in enumerate(dts) if dt.year == this_year]
)
fig.text(
0.97,
0.15,
f"{RUNNER}\n"
f"{years} years\n"
f"{len(dts)} times\n"
f"total {accs[-1]:.2f}Km\n"
f"this year {distance_this_year:.2f}Km\n"
f"latest {dts[-1]: %Y-%m-%d} {distances[-1]:.2f}Km",
ha="right",
va="bottom",
fontsize="small",
linespacing=1.5,
color="w",
)
img = plt.imread("runner.png")
ax.add_artist(
AnnotationBbox(
OffsetImage(img, zoom=0.03),
(0.95, 0.05),
xycoords="axes fraction",
frameon=False,
)
)
fig.savefig("miles.svg")
def pace_label_fmt(val: float, pos) -> str:
min = val // 60
sec = val % 60
return f"{min:.0f}'{sec:.0f}\""
def make_circular(lst: list[T]) -> list[T]:
if len(lst) > 1:
lst.append(lst[0])
return lst
def get_attendance(dts: list[datetime]) -> tuple[list[float], list[float]]:
dts_all_monthly = groupby(dts, lambda d: d.month)
this_year = datetime.now().year
dts_this_year = [d for d in dts if d.year == this_year]
dts_this_year_monthly = groupby(dts_this_year, lambda d: d.month)
days_all_monthly = get_days_monthly(
dts[0].year, dts[-1].year, dts[0].month, dts[-1].month
)
days_this_year_monthly = get_days_monthly(this_year, this_year)
attendance_all = []
attendance_this_year = []
for m in range(1, 13):
if m in dts_all_monthly:
attendance_all.append(len(dts_all_monthly[m]) / days_all_monthly[m] * 100)
else:
attendance_all.append(0.0)
if m in dts_this_year_monthly:
attendance_this_year.append(
len(dts_this_year_monthly[m]) / days_this_year_monthly[m] * 100
)
else:
attendance_this_year.append(0.0)
return attendance_all, attendance_this_year
def get_days_monthly(
year_start: int,
year_end: int,
month_start: Optional[int] = None,
month_end: Optional[int] = None,
) -> dict[int, int]:
days_monthly = {}
for y in range(year_start, year_end + 1):
for m in range(
month_start if month_start and y == year_start else 1,
(month_end if month_end and y == year_end else 12) + 1,
):
days = calendar.monthrange(y, m)[1]
if m in days_monthly:
days_monthly[m] += days
else:
days_monthly[m] = days
return days_monthly
def groupby(data: list[T], key_func: Callable[[T], K]) -> dict[K, list[T]]:
grouped_data = {}
for item in data:
key = key_func(item)
if key in grouped_data:
grouped_data[key].append(item)
else:
grouped_data[key] = [item]
return grouped_data
def get_running_data() -> (
tuple[list[datetime], list[float], list[float], list[int], list[tuple[int, int]]]
):
data = []
with open("running.csv") as file:
for line in file:
cols = line.rstrip().split(",")
if cols[0] == "DT":
continue
dt = datetime.strptime(cols[0], "%Y-%m-%d %H:%M:%S")
distance = float(cols[1])
heart = int(cols[2]) if cols[2].isdecimal() else None
# garmin数据中配速为整分整秒时,比如6:00,传过来的原始值竟然是5:60
mins, secs = [int(i) for i in cols[3].split(":")]
if secs == 60:
mins = mins + 1
secs = 0
if distance <= 0.0:
continue
data.append((dt, distance, heart, (mins, secs)))
data.sort(key=lambda t: t[0])
acc = 0.0
dts = []
accs = []
distances = []
hearts = []
paces = []
for idx, (dt, distance, heart, pace) in enumerate(data):
acc += distance
dts.append(dt)
accs.append(acc)
distances.append(distance)
if heart:
hearts.append(heart)
paces.append(pace)
return dts, accs, distances, hearts, paces
def sync_data(dt_str: str, distance_str: str, heart_str: str, pace_str: str) -> bool:
dt_strs = dt_str.split(",")
distances = distance_str.split(",")
hearts = heart_str.split(",")
paces = pace_str.split(",")
n = len(dt_strs)
if len(distances) != n:
print("distance length not equal dt length")
return False
elif len(hearts) != n:
print("heart rate length not equal dt length")
return False
elif len(paces) != n:
print("pace length not equal dt length")
return False
dts, _, _, _, _ = get_running_data()
if dts:
latest = dts[-1]
new_data = [
(dt_str, distances[i], hearts[i], paces[i])
for i, dt_str in enumerate(dt_strs)
if datetime.strptime(dt_str, "%Y-%m-%d %H:%M:%S") > latest
]
if new_data:
with open("running.csv", "a") as f:
for dt_str, distance, heart, pace in sorted(
new_data, key=lambda t: t[0]
):
f.write(f"{dt_str},{distance},{heart},{pace}\n")
else:
print("no new data")
return False
else:
with open("running.csv", "a") as f:
for i, dt_str in enumerate(dt_strs):
f.write(f"{dt_str},{distances[i]},{hearts[i]},{paces[i]}\n")
return True
if __name__ == "__main__":
args = sys.argv
if len(args) < 2:
sys.exit(
"args is not right, e.g. python main.py http 2022-01-02 12:00:21 140 4:56"
)
op = args[1]
if op != "http" and op != "push":
sys.exit("op must be http or push")
if op == "http":
if sync_data(args[2], args[3], args[4], args[5]):
plot_running()
elif op == "push":
plot_running()
else:
sys.exit("args is not right, e.g. python main.py http 2022-01-02 12:00:21")