-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_AB.bash
60 lines (44 loc) · 1.7 KB
/
run_AB.bash
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/bin/bash
# Version: 2
# Written by: Tirtharaj Dash, Ph.D. Student, BITS Pilani, Goa Campus, India
# Date: During December 2019
# E-mail: tirtharaj@goa.bits-pilani.ac.in
# Work: BotGNN (Graph Neural Network based on ILP Bottom Clause)
# A bottom clause in ILP can be written as a set of relation and entities.
# We treat each relation as a relation(R) node and an entity as an entity(E) node
# This forms a graph (possibly, a bi-partite) graph of R-E nodes
# This work is intended towards making the the idea of incorporating domain-knowledge generic for any ILP problem.
# Purpose: bash script to run graph classification methods on NCI data (73 problems): atom-bond data only
# Learning Type: Classification (Binary)
# Result storage mapping: [ Methods: BotGNN | ID: 1--5 (networks1--5.py) ]
#path settings
prefixdir="/home/dell5810/tdash/prepareBotGraph/Czech_AB/processedBOTDS"
trntstsplitdir="/home/dell5810/tdash/DataForVEGNN/TrainTestSplit"
#create the directory where the Results will be stored
resultdir="Result_BotGNN5_Czech_AB"
if [ ! -d $resultdir ]
then
mkdir $resultdir
fi
#for each dataset in the list
for dataset in `cat datasets`
do
echo "Working on: $dataset"
#copy the input: train and test files to run dir
rm -rf ./data/BOTDS/*
mkdir ./data/BOTDS/raw
cp $prefixdir/$dataset/BOTDS_*.txt ./data/BOTDS/raw/.
#copy the train_test split info
cp $trntstsplitdir/$dataset/*_split ./data/BOTDS/.
#run the python program
python main.py --dataset BOTDS
#store the results
if [ -d ./$resultdir/$dataset ]
then
rm -rf ./$resultdir/$dataset
fi
mkdir ./$resultdir/$dataset
#mv ./data/DS/* $resultdir/$dataset/.
mv score.txt $resultdir/$dataset/.
mv latest.pth $resultdir/$dataset/.
done