-
Notifications
You must be signed in to change notification settings - Fork 0
/
gelation_model.py
236 lines (219 loc) · 8.59 KB
/
gelation_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import random as rnd
class Polymer:
"""Polymer class with a name and number of hydroxyl groups."""
def __init__(self, name, hydroxyls):
if not isinstance(name, str):
raise TypeError("Only strings are accepted")
if not isinstance(hydroxyls, int):
raise TypeError("Only integers are accepted")
self.name = name
self.hydroxyls = hydroxyls
class Kneader:
"""
Kneader class that models the crosslinking reaction in a stochastic fashion between polymers.
The kneader class accepts polymers as feed using the specify_polymer and del_polymer methods to add or remove polymers. The crosslinking reaction is modelled using the crosslink method.
"""
def __init__(self):
self.polymers = dict() # polymers and amounts
self.blob_count = [] # each group of crosslinked polymers
self.chain_count = [] # number of chains of each polymer in each blob
self.hydroxyl_count = [] # number of hydroxyl groups of each polymer in each blob
self.polymer_order = [] # order of polymer being crosslinked
def _check_polymer(self, polymer):
"""Check polymer class."""
if not isinstance(polymer, Polymer):
raise TypeError("Only polymers are accepted")
return
def specify_polymer(self, polymer, amount):
"""Add an amount of a type of polymer."""
self._check_polymer(polymer)
self.polymers[polymer.name] = {
"hydroxyls": polymer.hydroxyls,
"amount": amount,
}
return
def del_polymer(self, polymer):
"""Remove a polymer."""
self._check_polymer(polymer)
del(self.polymers[polymer.name])
return
def crosslink(self, crosslink_count):
"""Model the crosslinking reaction stochastically."""
self._init_crosslink()
for each in crosslink_count:
for _ in range(int(each[2])): # No. of crosslinks
old_blob = -1
for i in range(2): # 2 polymers getting crosslinked
blob_idx, poly_idx = self._rand_blob(each[i])
old_blob, empty_pos = self._move_blob(blob_idx, poly_idx, old_blob)
if empty_pos:
self._collate_blobs(old_blob)
return
def _init_crosslink(self):
"""Initialise variables."""
self.blob_count = []
self.chain_count = []
self.hydroxyl_count = []
self.polymer_order = []
self.polymer_count = len(self.polymers)
for idx, poly in enumerate(self.polymers):
blob = self.polymers[poly]["amount"]
chain = [0]*self.polymer_count
chain[idx] += 1
hyd = [0]*self.polymer_count
hyd[idx] += self.polymers[poly]["hydroxyls"]
self.blob_count.append(blob)
self.chain_count.append(chain)
self.hydroxyl_count.append(hyd)
self.polymer_order.append(poly)
return
def _rand_blob(self, polymer):
"""Return a random polymer chain chosen by randomly choosing a hydroxyl group."""
poly_idx = self.polymer_order.index(polymer.name)
hydroxyl_tot = sum(
x[0]*x[1][poly_idx] for x in zip(
self.blob_count,
self.hydroxyl_count,
)
)
hydroxyl_idx = int(rnd.getrandbits(100) % hydroxyl_tot + 1)
blob_idx = self._find_blob(
poly_idx,
hydroxyl_idx,
len(self.blob_count),
)
return blob_idx, poly_idx
def _find_blob(self, poly_idx, hyd_idx, length):
"""Binary search for the index of a polymer based on the index of its hydroxyl group."""
left = 0
right = length
while left < right:
mid = left + (right-left)//2
left_sum = sum(
x[0]*x[1][poly_idx] for x in zip(
self.blob_count[:mid],
self.hydroxyl_count[:mid],
)
)
if hyd_idx > left_sum:
left = mid+1
else:
right = mid
return right-1
def _move_blob(self, blob_idx, poly_idx, old_blob):
"""Crosslink the two polymers."""
empty_pos = False
if self.blob_count[blob_idx] == 1 and (
blob_idx == old_blob or old_blob == -1
):
# Intramolecular cross-linking
hyd = [0]*self.polymer_count
hyd[poly_idx] -= 1
self.hydroxyl_count[blob_idx] = [
sum(x) for x in zip(
self.hydroxyl_count[blob_idx],
hyd,
)
]
return blob_idx, empty_pos
if old_blob == -1 and self.blob_count[blob_idx] != 1:
# Create ghost blob
self.blob_count.append(1)
self.chain_count.append([0]*self.polymer_count)
self.hydroxyl_count.append([0]*self.polymer_count)
old_blob = len(self.blob_count)-1
self.chain_count[old_blob] = [
sum(x) for x in zip(
self.chain_count[blob_idx],
self.chain_count[old_blob],
)
]
hyd = [0]*self.polymer_count
hyd[poly_idx] -= 1
self.hydroxyl_count[old_blob] = [
sum(x) for x in zip(
self.hydroxyl_count[blob_idx],
self.hydroxyl_count[old_blob],
hyd,
)
]
self.blob_count[blob_idx] -= 1
if not self.blob_count[blob_idx]: # clean up empty blob
del(self.blob_count[blob_idx])
del(self.chain_count[blob_idx])
del(self.hydroxyl_count[blob_idx])
empty_pos = True
if old_blob > blob_idx:
old_blob -= 1
return old_blob, empty_pos
def _collate_blobs(self, old_blob):
"""Order the list of polymer chains according to the number of each polymer types."""
equal_list = list(
id for id, x in enumerate(self.hydroxyl_count) if self.hydroxyl_count[id] == self.hydroxyl_count[old_blob] and id != old_blob
)
if not equal_list:
return
idx = equal_list[0]
self.blob_count[idx] += 1
del(self.blob_count[old_blob])
del(self.chain_count[old_blob])
del(self.hydroxyl_count[old_blob])
return
# Example - Crosslinking of carboxymethyl cellulose (CMC) with starch (S)
points = [ # [reaction time, degree of crosslinking]
[0.5, 3.5520782E-6],
[1, 1.5063633E-5],
[1.5, 3.453642E-5],
[2, 6.197044E-5],
[2.5, 9.7365686E-5],
[3, 1.4072216E-4],
[3.5, 1.9203988E-4],
[4, 2.5081958E-4],
[4.5, 3.1681114E-4],
[5, 3.9050024E-4],
[5.5, 4.7188686E-4],
[6, 5.6097104E-4],
[6.5, 6.577527E-4],
[7, 7.622319E-4],
[7.5, 8.744086E-4],
[8, 9.936807E-4],
[8.5, 0.0011203686],
[9, 0.0012544971],
[9.5, 0.0013960659],
]
for i in range(len(points)):
frac_CMC = 0.160 # fraction of CMC-CMC crosslinks
frac_CS = 0.288 # fraction of CMC-S crosslinks
frac_SS = 0.552 # fraction of S-S crosslinks
DC_total = points[i][1]
CMC_hyd = 1000 * 2 # no. of hydroxyl groups per CMC chain
Starch_hyd = 960 * 3 # no. of hydroxyl groups per starch chain
total_mass = 100000 # total number of polymer chains
wt_CMC = 0.7 # mass fraction of CMC
mw_CMC = 240.19 # molecular weight of CMC
mw_S = 162.14 # molecular weight of starch
CMC_amt = total_mass * wt_CMC / mw_CMC
Starch_amt = total_mass * (1-wt_CMC) / mw_S
DC_CMC = DC_total * frac_CMC
DC_CS = DC_total * frac_CS
DC_starch = DC_total * frac_SS
b = [] # list record of biggest blobs
for j in range(10): # number of stochastic simulations
CMC = Polymer("CMC", CMC_hyd)
Starch = Polymer("Starch", Starch_hyd)
R301 = Kneader()
R301.specify_polymer(CMC, CMC_amt)
R301.specify_polymer(Starch, Starch_amt)
R301.crosslink(
[
[CMC, CMC, int(CMC_hyd*CMC_amt*DC_CMC)],
[CMC, Starch, int((CMC_hyd*CMC_amt + Starch_hyd*Starch_amt)*DC_CS)],
[Starch, Starch, int(Starch_hyd*Starch_amt*DC_starch)],
]
)
size = max(sum(x) for x in R301.chain_count) # biggest blob size
b.append(list(x for x in R301.chain_count if sum(x) == size)) # add all blobs of that size
number = sum(len(x) for x in b) # number of blobs
c = sum(sum(x[0] for x in y) for y in b)
s = sum(sum(x[1] for x in y) for y in b)
print(f"Data for {points[i][0]}: CMC - {c/number}, S - {s/number}") # average CMC/S per largest blob