This repository has been archived by the owner on Jun 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathanimation.py
executable file
·307 lines (260 loc) · 11.4 KB
/
animation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 22 13:55:02 2020
This file plots stuff in 3D
@author: tjards
"""
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
from matplotlib import animation
import numpy as np
plt.rcParams['animation.ffmpeg_path'] = '/usr/local/bin/ffmpeg' #my add - this path needs to be added
Writer = animation.writers['ffmpeg']
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)
numFrames = 10 # frame rate (bigger = slower)
tail = 300
zoom = 1 # do you want to adjust frames with motion? [0 = no, 1 = yes]
def animateMe(Ts, t_all, states_all, cmds_all, targets_all, obstacles_all, r, d, walls_plots, showObs, centroid_all, f, r_desired, tactic_type):
# pull out positions
# ------------------
nVeh = states_all.shape[2]
nObs = obstacles_all.shape[2]
r_copy = r
# intermediate variables
# ----------------------
x = states_all[:,0,:]
y = states_all[:,1,:]
z = states_all[:,2,:]
x_from0 = x
y_from0 = y
z_from0 = z
x_v = states_all[:,3,:]
y_v = states_all[:,4,:]
z_v = states_all[:,5,:]
head = 0.2
x_head = states_all[:,0,:] + head*x_v
y_head = states_all[:,1,:] + head*x_v
z_head = states_all[:,2,:] + head*x_v
x_t = targets_all[:,0,:]
y_t = targets_all[:,1,:]
z_t = targets_all[:,2,:]
x_o = obstacles_all[:,0,:]
y_o = obstacles_all[:,1,:]
z_o = obstacles_all[:,2,:]
r_o = obstacles_all[:,3,:]
cx = centroid_all[:,0,:]
cy = centroid_all[:,1,:]
cz = centroid_all[:,2,:]
cd = round(np.linalg.norm(centroid_all[0,:,0].ravel()-targets_all[0,0:3,0]),1)
# initialize plot
# ---------------
fig = plt.figure()
ax = p3.Axes3D(fig)
# axis properties
# ---------------
margins = 0.5
maxRange = 0.5*np.array([x.max()-x.min(), y.max()-y.min(), z.max()-z.min()]).max() + margins
mid_x = 0.5*(x.max()+x.min())
mid_y = 0.5*(y.max()+y.min())
mid_z = 0.5*(z.max()+z.min())
ax.set_xlim3d([mid_x-maxRange, mid_x+maxRange])
ax.set_xlabel('x-direction')
ax.set_ylim3d([mid_y-maxRange, mid_y+maxRange])
ax.set_ylabel('y-direction')
ax.set_zlim3d([mid_z-maxRange, mid_z+maxRange])
ax.set_zlabel('Altitude')
# labels
# ------
titleTime = ax.text2D(0.05, 0.95, "", transform=ax.transAxes)
#titleType1 = ax.text2D(0.95, 0.95, '%s : %s' % ("Lattice separation", d), transform=ax.transAxes, horizontalalignment='right')
titleType1 = ax.text2D(0.95, 0.95, "Mode: Dynamic Encirclement", transform=ax.transAxes, horizontalalignment='right')
#titleType2 = ax.text2D(0.95, 0.91, 'Title2', transform=ax.transAxes, horizontalalignment='right')
titleType2 = ax.text2D(0.95, 0.91, '%s : %s' % ("Centroid distance", cd), transform=ax.transAxes, horizontalalignment='right')
titleType3 = ax.text2D(0.95, 0.87, '%s : %s' % ("Encircle radius", r_desired), transform=ax.transAxes, horizontalalignment='right')
# plot things that never move (targets, for now)
#ax.scatter(targets[0,:], targets[1,:], targets[2,:], color='red', alpha=1, marker = 'o', s = 25)
# initialize lines
# -----------------
lines_dots = []
lines_tails = []
lines_heads = []
lines_targets = []
lines_obstacles = []
#lattice = ax.plot([], [], [], '-', lw=1, color='cyan')
lattices = []
centroids = ax.plot([], [], [], 'kx')
centroids_line = ax.plot([], [], [], '--', lw=1, color='black')
# draw planes (stationary)
# -----------------------
if showObs == 2:
for i in range(0, walls_plots.shape[1]):
xx, yy = np.meshgrid(np.linspace(mid_x-maxRange, mid_x+maxRange, 20), np.linspace(mid_y-maxRange, mid_y+maxRange, 20))
if walls_plots[2,i] == 0:
walls_plots[2,i] = 0.001 # avoid divide by zero
zz = (-walls_plots[0,i] * xx - walls_plots[1,i] * yy + walls_plots[3,i] * 1.) / walls_plots[2,i]
ax.plot_wireframe(xx, yy, zz, color='m', rcount=20, ccount=20)
# initialize moving stuff
# -----------------------
for i in range (0, nVeh):
line_dot = ax.plot([], [], [], 'bo')
lines_dots.extend(line_dot)
line_tail = ax.plot([], [], [], ':', lw=1, color='blue')
lines_tails.extend(line_tail)
line_head = ax.plot([], [], [], '-', lw=1, color='black')
lines_heads.extend(line_head)
line_target = ax.plot([], [], [], 'go')
lines_targets.extend(line_target)
lattice = ax.plot([], [], [], ':', lw=1, color=[0.5,0.5,0.5])
lattices.extend(lattice)
# initialize obstacles (if config'd)
# ---------------------------------
if showObs >= 1:
for j in range (0, nObs):
line_obstacle = ax.plot([], [], [], 'ro', ms = 10*r_o[0,j] )
lines_obstacles.extend(line_obstacle)
# update the lines
# ----------------
def update(i):
time = t_all[i*numFrames]
x = states_all[i*numFrames,0,:]
y = states_all[i*numFrames,1,:]
z = states_all[i*numFrames,2,:]
#x_from0 = states_all[0:i*numFrames,0]
#y_from0 = states_all[0:i*numFrames,1]
#z_from0 = states_all[0:i*numFrames,2]
x_from0 = states_all[i*numFrames-tail:i*numFrames,0,:]
y_from0 = states_all[i*numFrames-tail:i*numFrames,1,:]
z_from0 = states_all[i*numFrames-tail:i*numFrames,2,:]
x_v = states_all[i*numFrames,3,:]
y_v = states_all[i*numFrames,4,:]
z_v = states_all[i*numFrames,5,:]
#norma = np.maximum(np.linalg.norm([x+x_v,y+y_v,z+z_v]),0.001)
norma = np.maximum(np.sqrt(x_v**2 + y_v**2 + z_v**2),0.0001)
x_head = x + head*x_v/norma
y_head = y + head*y_v/norma
z_head = z + head*z_v/norma
x_point = np.vstack((x,x_head))
y_point = np.vstack((y,y_head))
z_point = np.vstack((z,z_head))
x_t = targets_all[i*numFrames,0,:]
y_t = targets_all[i*numFrames,1,:]
z_t = targets_all[i*numFrames,2,:]
x_o = obstacles_all[i*numFrames,0,:]
y_o = obstacles_all[i*numFrames,1,:]
z_o = obstacles_all[i*numFrames,2,:]
r_o = obstacles_all[i*numFrames,3,:]
pos = states_all[i*numFrames,0:3,:]
x_lat = np.zeros((nVeh,nVeh))
y_lat = np.zeros((nVeh,nVeh))
z_lat = np.zeros((nVeh,nVeh))
cx = centroid_all[i*numFrames,0,:]
cy = centroid_all[i*numFrames,1,:]
cz = centroid_all[i*numFrames,2,:]
cd = round(np.linalg.norm(centroid_all[i*numFrames,:,0].ravel()-targets_all[i*numFrames,0:3,0]),1)
# reset axis limits
# -----------------
if zoom == 1:
margins = 0.5
maxRange = 0.5*np.array([x.max()-x.min(), y.max()-y.min(), z.max()-z.min()]).max() + margins
mid_x = 0.5*(x.max()+x.min())
mid_y = 0.5*(y.max()+y.min())
mid_z = 0.5*(z.max()+z.min())
ax.set_xlim3d([mid_x-maxRange, mid_x+maxRange])
ax.set_ylim3d([mid_y-maxRange, mid_y+maxRange])
ax.set_zlim3d([mid_z-maxRange, mid_z+maxRange])
# build lattice
# -------------
if f[i*numFrames] < 1:
r_ = 0*r_copy
else:
r_ = r_copy # just to help visualize vehicle interactions
for j in range (0, nVeh):
temp_lat = lattices[j]
# search through each neighbour
for k_neigh in range(pos.shape[1]):
# except for itself (duh):
if j != k_neigh:
# compute the euc distance between them
dist = np.linalg.norm(pos[:,j]-pos[:,k_neigh])
# if it is within the interaction range
if dist <= r_:
x_lat[k_neigh,j] = pos[0,k_neigh]
y_lat[k_neigh,j] = pos[1,k_neigh]
z_lat[k_neigh,j] = pos[2,k_neigh]
else:
x_lat[k_neigh,j] = pos[0,j]
y_lat[k_neigh,j] = pos[1,j]
z_lat[k_neigh,j] = pos[2,j]
else:
x_lat[k_neigh,j] = pos[0,j]
y_lat[k_neigh,j] = pos[1,j]
z_lat[k_neigh,j] = pos[2,j]
temp_lat.set_data(x_lat[:,j], y_lat[:,j])
temp_lat.set_3d_properties(z_lat[:,j])
# plot states... etc
# ------------------
for j in range (0, nVeh):
# create a temporary holder
# -------------------------
temp1 = lines_dots[j]
temp2 = lines_tails[j]
temp3 = lines_heads[j]
temp4 = lines_targets[j]
#temp_lat = lattices[j]
temp1.set_data(x[j], y[j])
temp1.set_3d_properties(z[j])
# set variables
# -------------
temp2.set_data(x_from0[:,j], y_from0[:,j])
temp2.set_3d_properties(z_from0[:,j])
#temp3.set_data(x_point[:,j],y_point[:,j])
#temp3.set_3d_properties(z_point[:,j])
temp4.set_data(x_t[j], y_t[j])
temp4.set_3d_properties(z_t[j])
temp3.set_data(x_point[:,j],y_point[:,j])
temp3.set_3d_properties(z_point[:,j])
# set colors
if tactic_type >= 3:
#print(f[i*numFrames-1])
if f[i*numFrames] < 0.5: # if f dros below 0.5, we've transitioned to new tactic
if (j % 2) == 0: # even vehicles go tactic 1, odd vehicles go tactic 2
temp1.set_color('b')
temp2.set_color('b')
else:
temp1.set_color('c')
temp2.set_color('c')
else:
temp1.set_color('b')
temp2.set_color('b')
# build obstacles
# ---------------
if showObs >= 1:
for k in range (0, nObs):
temp5 = lines_obstacles[k]
temp5.set_data(x_o[k], y_o[k])
temp5.set_3d_properties(z_o[k])
# set others
# ----------
#line2.set_data(x, y)
#line2.set_3d_properties(z)
#line3.set_data(x_from0, y_from0)
#line3.set_3d_properties(z_from0)
titleTime.set_text(u"Time = {:.2f} s".format(time))
titleType2.set_text('%s : %s' % ("Centroid Distance", cd))
centroids[0].set_data(cx,cy)
centroids[0].set_3d_properties(cz)
cx_line=np.vstack((cx,x_t[0])).ravel()
cy_line=np.vstack((cy,y_t[0])).ravel()
cz_line=np.vstack((cz,z_t[0])).ravel()
centroids_line[0].set_data(cx_line,cy_line)
centroids_line[0].set_3d_properties(cz_line)
return lines_dots, lines_tails, titleTime, lines_targets, lines_obstacles, centroids
# make a GIF
# ----------
line_ani = animation.FuncAnimation(fig, update, blit=False, frames=len(t_all[0:-2:numFrames]), interval=(Ts*1000*numFrames))
line_ani.save('Figs/animation.gif', writer=writer)
plt.show()
return line_ani
#ax.scatter(states_all[:,0], states_all[:,1], states_all[:,2], color='blue', alpha=1, marker = 'o', s = 25)
print('animated')