This repository has been archived by the owner on Jun 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·464 lines (380 loc) · 16.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This project implements an autonomous, decentralized swarming strategies including:
- Reynolds rules of flocking ("boids")
- Olfati-Saber flocking
- Starling flocking
- Dynamic Encirclement
- Leminiscatic Arching
- Pinning Control
- Static Shapes (prototype)
The strategies requires no human invervention once the target is selected and all agents rely on local knowledge only.
Each vehicle makes its own decisions about where to go based on its relative position to other vehicles
Created on Tue Dec 22 11:48:18 2020
@author: tjards
"""
#%% Import stuff
# --------------
# official packages
#from scipy.integrate import ode
import numpy as np
import pickle
import matplotlib.pyplot as plt
#plt.style.use('dark_background')
#plt.style.use('classic')
plt.style.use('default')
#plt.style.available
#plt.style.use('Solarize_Light2')
# from root folder
import animation
import dynamics_node as node
import ctrl_tactic as tactic
# utilities
from utils import encirclement_tools as encircle_tools
from utils import staticShapes_tools as statics
from utils import pinning_tools, lemni_tools, starling_tools, swarm_metrics, tools, modeller
#%% Setup Simulation
# ------------------
np.random.seed(3)
Ti = 0 # initial time
Tf = 30 # final time
Ts = 0.02 # sample time
nVeh = 7 # number of vehicles
iSpread = 50 # initial spread of vehicles
tSpeed = 0.001 # speed of target
rVeh = 1 # physical radius of vehicle
tactic_type = 'pinning'
# reynolds = Reynolds flocking + Olfati-Saber obstacle
# saber = Olfati-Saber flocking
# starling = swar like starlings
# circle = encirclement
# lemni = dynamic lemniscate
# pinning = pinning control
# statics = static shapes (prototype)
# if using reynolds, need make target an obstacle
if tactic_type == 'reynolds':
targetObs = 1
else:
targetObs = 0
# do we want to build a model in real time?
#real_time_model = 'yes'
# Vehicles states
# ---------------
state = np.zeros((6,nVeh))
state[0,:] = iSpread*(np.random.rand(1,nVeh)-0.5) # position (x)
state[1,:] = iSpread*(np.random.rand(1,nVeh)-0.5) # position (y)
state[2,:] = np.maximum((iSpread*np.random.rand(1,nVeh)-0.5),2)+15 # position (z)
state[3,:] = 0 # velocity (vx)
state[4,:] = 0 # velocity (vy)
state[5,:] = 0 # velocity (vz)
#centroid = tools.centroid(state[0:3,:].transpose())
#centroid_v = tools.centroid(state[3:6,:].transpose())
centroid = swarm_metrics.centroid(state[0:3,:].transpose())
centroid_v = swarm_metrics.centroid(state[3:6,:].transpose())
# select a pin (for pinning control)
pin_matrix = pinning_tools.select_pins_components(state[0:3,:],'gramian')
# Commands
# --------
cmd = np.zeros((3,nVeh))
cmd[0] = np.random.rand(1,nVeh)-0.5 # command (x)
cmd[1] = np.random.rand(1,nVeh)-0.5 # command (y)
cmd[2] = np.random.rand(1,nVeh)-0.5 # command (z)
# Targets
# -------
targets = 4*(np.random.rand(6,nVeh)-0.5)
targets[0,:] = 0 #5*(np.random.rand(1,nVeh)-0.5)
targets[1,:] = 0 #5*(np.random.rand(1,nVeh)-0.5)
targets[2,:] = 15
targets[3,:] = 0
targets[4,:] = 0
targets[5,:] = 0
targets_encircle = targets.copy()
error = state[0:3,:] - targets[0:3,:]
# Other Parameters
# ----------------
params = np.zeros((4,nVeh)) # store dynamic parameters
# do I want to model in realtime?
#if real_time_model == 'yes':
# swarm_model = modeller.model()
#%% Define obstacles (kind of a manual process right now)
# ------------------------------------------------------
nObs = 0 # number of obstacles
vehObs = 0 # include other vehicles as obstacles [0 = no, 1 = yes]
# there are no obstacle, but we need to make target an obstacle
if nObs == 0 and targetObs == 1:
nObs = 1
obstacles = np.zeros((4,nObs))
oSpread = 20
# manual (comment out if random)
# obstacles[0,:] = 0 # position (x)
# obstacles[1,:] = 0 # position (y)
# obstacles[2,:] = 0 # position (z)
# obstacles[3,:] = 0
#random (comment this out if manual)
if nObs != 0:
obstacles[0,:] = oSpread*(np.random.rand(1,nObs)-0.5)+targets[0,0] # position (x)
obstacles[1,:] = oSpread*(np.random.rand(1,nObs)-0.5)+targets[1,0] # position (y)
obstacles[2,:] = oSpread*(np.random.rand(1,nObs)-0.5)+targets[2,0] # position (z)
#obstacles[2,:] = np.maximum(oSpread*(np.random.rand(1,nObs)-0.5),14) # position (z)
obstacles[3,:] = np.random.rand(1,nObs)+1 # radii of obstacle(s)
# manually make the first target an obstacle
if targetObs == 1:
obstacles[0,0] = targets[0,0] # position (x)
obstacles[1,0] = targets[1,0] # position (y)
obstacles[2,0] = targets[2,0] # position (z)
obstacles[3,0] = 2 # radii of obstacle(s)
# Walls/Floors
# - these are defined manually as planes
# --------------------------------------
nWalls = 1 # default 1, as the ground is an obstacle
walls = np.zeros((6,nWalls))
walls_plots = np.zeros((4,nWalls))
# add the ground at z = 0:
newWall0, newWall_plots0 = tools.buildWall('horizontal', -2)
# load the ground into constraints
walls[:,0] = newWall0[:,0]
walls_plots[:,0] = newWall_plots0[:,0]
# add other planes (comment out by default)
# newWall1, newWall_plots1 = flock_tools.buildWall('diagonal1a', 3)
# newWall2, newWall_plots2 = flock_tools.buildWall('diagonal1b', -3)
# newWall3, newWall_plots3 = flock_tools.buildWall('diagonal2a', -3)
# newWall4, newWall_plots4 = flock_tools.buildWall('diagonal2b', 3)
# load other planes (comment out by default)
# walls[:,1] = newWall1[:,0]
# walls_plots[:,1] = newWall_plots1[:,0]
# walls[:,2] = newWall2[:,0]
# walls_plots[:,2] = newWall_plots2[:,0]
# walls[:,3] = newWall3[:,0]
# walls_plots[:,3] = newWall_plots3[:,0]
# walls[:,4] = newWall4[:,0]
# walls_plots[:,4] = newWall_plots4[:,0]
#%% Run Simulation
# ----------------------
t = Ti
i = 1
f = 0 # parameter for future use
nSteps = int(Tf/Ts+1)
# initialize a bunch of storage
t_all = np.zeros(nSteps)
states_all = np.zeros([nSteps, len(state), nVeh])
cmds_all = np.zeros([nSteps, len(cmd), nVeh])
targets_all = np.zeros([nSteps, len(targets), nVeh])
obstacles_all = np.zeros([nSteps, len(obstacles), nObs])
centroid_all = np.zeros([nSteps, len(centroid), 1])
f_all = np.ones(nSteps)
lemni_all = np.zeros([nSteps, nVeh])
nMetrics = 12 # there are 11 positions being used.
metrics_order_all = np.zeros((nSteps,nMetrics))
metrics_order = np.zeros((1,nMetrics))
pins_all = np.zeros([nSteps, nVeh, nVeh])
# store the initial conditions
t_all[0] = Ti
states_all[0,:,:] = state
cmds_all[0,:,:] = cmd
targets_all[0,:,:] = targets
obstacles_all[0,:,:] = obstacles
centroid_all[0,:,:] = centroid
f_all[0] = f
metrics_order_all[0,:] = metrics_order
lemni = np.zeros([1, nVeh])
lemni_all[0,:] = lemni
pins_all[0,:,:] = pin_matrix
# we need to move the 'target' for mobbing (a type of lemniscate)
if tactic_type == 'lemni':
targets = lemni_tools.check_targets(targets)
#%% start the simulation
# --------------------
while round(t,3) < Tf:
# Evolve the target
# -----------------
targets[0,:] = 100*np.sin(tSpeed*t) # targets[0,:] + tSpeed*0.002
targets[1,:] = 100*np.sin(tSpeed*t)*np.cos(tSpeed*t) # targets[1,:] + tSpeed*0.005
targets[2,:] = 100*np.sin(tSpeed*t)*np.sin(tSpeed*t)+15 # targets[2,:] + tSpeed*0.0005
# For pinning application, we set the first agent as the "pin",
# which means all other targets have to be set to the pin
# comment out for non-pinning control
# ------------------------------------------------------------
#targets[0,1::] = state[0,0]
#targets[1,1::] = state[1,0]
#targets[2,1::] = state[2,0]
# Update the obstacles (if required)
# ----------------------------------
if targetObs == 1:
obstacles[0,0] = targets[0,0] # position (x)
obstacles[1,0] = targets[1,0] # position (y)
obstacles[2,0] = targets[2,0] # position (z)
# modeller: load the current states (x,v), centroid states (x,v) and inputs (of the first agent)
# -------------------------------------------------------------------------------
#swarm_model.update_stream_x(np.concatenate((np.array(state[0:6,0],ndmin=2).transpose(),centroid, centroid_v, np.array(cmd[0:3,0],ndmin=2).transpose()),axis=0))
# Evolve the states
# -----------------
state = node.evolve(Ts, state, cmd)
#state = node.evolve_sat(Ts, state, cmd)
# Store results
# -------------
t_all[i] = t
states_all[i,:,:] = state
cmds_all[i,:,:] = cmd
targets_all[i,:,:] = targets
obstacles_all[i,:,:] = obstacles
centroid_all[i,:,:] = centroid
f_all[i] = f
lemni_all[i,:] = lemni
metrics_order_all[i,:] = metrics_order
pins_all[i,:,:] = pin_matrix
# Increment
# ---------
t += Ts
i += 1
#%% Compute Trajectory
# --------------------
#if flocking
if tactic_type == 'reynolds' or tactic_type == 'saber' or tactic_type == 'starling' or tactic_type == 'pinning':
trajectory = targets
# if encircling
if tactic_type == 'circle':
trajectory, _ = encircle_tools.encircle_target(targets, state)
# if lemniscating
elif tactic_type == 'lemni':
trajectory, lemni = lemni_tools.lemni_target(nVeh,lemni_all,state,targets,i,t)
# if static shapes
elif tactic_type == 'statics':
trajectory, lemni = statics.lemni_target(nVeh,lemni_all,state,targets,i,t)
#%% Prep for compute commands (next step)
# ----------------------------
states_q = state[0:3,:] # positions
states_p = state[3:6,:] # velocities
# Compute metrics
# ---------------
#centroid = tools.centroid(state[0:3,:].transpose())
#centroid_v = tools.centroid(state[3:6,:].transpose())
centroid = swarm_metrics.centroid(state[0:3,:].transpose())
centroid_v = swarm_metrics.centroid(state[3:6,:].transpose())
swarm_prox = tools.sigma_norm(centroid.ravel()-targets[0:3,0])
metrics_order[0,0] = swarm_metrics.order(states_p)
metrics_order[0,1:7] = swarm_metrics.separation(states_q,targets[0:3,:],obstacles)
metrics_order[0,7:9] = swarm_metrics.energy(cmd)
metrics_order[0,9:12] = swarm_metrics.spacing(states_q)
# load the updated centroid states (x,v)
# ---------------------------------------
#swarm_model.update_stream_y(np.concatenate((np.array(state[0:6,0],ndmin=2).transpose(),centroid, centroid_v),axis=0))
#if swarm_model.count_y >= swarm_model.desired_size:
# swarm_model.fit()
# swarm_model.count_x = -1
# swarm_model.count_y = -1
# Add other vehicles as obstacles (optional, default = 0)
# -------------------------------------------------------
if vehObs == 0:
obstacles_plus = obstacles
elif vehObs == 1:
states_plus = np.vstack((state[0:3,:], rVeh*np.ones((1,state.shape[1]))))
obstacles_plus = np.hstack((obstacles, states_plus))
#%% Compute the commads (next step)
# --------------------------------
cmd, params, pin_matrix = tactic.commands(states_q, states_p, obstacles_plus, walls, targets[0:3,:], targets[3:6,:], trajectory[0:3,:], trajectory[3:6,:], swarm_prox, tactic_type, centroid, params)
#%% Produce animation of simulation
# ---------------------------------
#print('here1')
showObs = 1 # (0 = don't show obstacles, 1 = show obstacles, 2 = show obstacles + floors/walls)
ani = animation.animateMe(Ts, t_all, states_all, cmds_all, targets_all[:,0:3,:], obstacles_all, walls_plots, showObs, centroid_all, f_all, tactic_type, pins_all)
# Produce plots
# --------------
start = 100
#%% Convergence to target
#-------------------------
fig, ax = plt.subplots()
ax.plot(t_all[start::],metrics_order_all[start::,1],'-b')
ax.plot(t_all[start::],metrics_order_all[start::,5],':b')
ax.plot(t_all[start::],metrics_order_all[start::,6],':b')
ax.fill_between(t_all[start::], metrics_order_all[start::,5], metrics_order_all[start::,6], color = 'blue', alpha = 0.1)
#note: can include region to note shade using "where = Y2 < Y1
ax.set(xlabel='Time [s]', ylabel='Mean Distance to Target [m]',
title='Convergence to Target')
#ax.plot([70, 70], [100, 250], '--b', lw=1)
#ax.hlines(y=5, xmin=Ti, xmax=Tf, linewidth=1, color='r', linestyle='--')
ax.set_xlim([0, Tf])
ax.grid()
#fig.savefig("test.png")
plt.show()
#%% Energy
# ------------
fig, ax = plt.subplots()
# set forst axis
ax.plot(t_all[start::],metrics_order_all[start::,7],'-g')
#ax.plot(t_all[4::],metrics_order_all[4::,7]+metrics_order_all[4::,8],':g')
#ax.plot(t_all[4::],metrics_order_all[4::,7]-metrics_order_all[4::,8],':g')
ax.fill_between(t_all[start::], metrics_order_all[start::,7], color = 'green', alpha = 0.1)
#note: can include region to note shade using "where = Y2 < Y1
ax.set(xlabel='Time [s]', title='Energy Consumption')
ax.set_ylabel('Total Acceleration [m^2]', color = 'g')
ax.tick_params(axis='y',colors ='green')
ax.set_xlim([0, Tf])
ax.set_ylim([0, 10])
#ax.plot([70, 70], [100, 250], '--b', lw=1)
#ax.hlines(y=5, xmin=Ti, xmax=Tf, linewidth=1, color='r', linestyle='--')
total_e = np.sqrt(np.sum(cmds_all**2))
# ax.text(3, 2, 'Total Energy: ' + str(round(total_e,1)), style='italic',
# bbox={'facecolor': 'green', 'alpha': 0.1, 'pad': 1})
# set second axis
ax2 = ax.twinx()
ax2.set_xlim([0, Tf])
ax2.set_ylim([0, 1])
ax2.plot(t_all[start::],1-metrics_order_all[start::,0], color='tab:blue', linestyle = '--')
#ax2.fill_between(t_all[4::], 1-metrics_order_all[4::,0], color = 'tab:blue', alpha = 0.1)
ax2.set(title='Energy Consumption')
ax2.set_ylabel('Disorder of the Swarm', color='tab:blue')
#ax2.invert_yaxis()
ax2.tick_params(axis='y',colors ='tab:blue')
ax2.text(Tf-Tf*0.3, 0.1, 'Total Energy: ' + str(round(total_e,1)), style='italic',
bbox={'facecolor': 'green', 'alpha': 0.1, 'pad': 1})
ax.grid()
#fig.savefig("test.png")
plt.show()
#%% Spacing
# ---------
fig, ax = plt.subplots()
# set forst axis
ax.plot(t_all[start::],metrics_order_all[start::,9],'-g')
ax.plot(t_all[start::],metrics_order_all[start::,11],'--g')
ax.fill_between(t_all[start::], metrics_order_all[start::,9], metrics_order_all[start::,11], color = 'green', alpha = 0.1)
#note: can include region to note shade using "where = Y2 < Y1
ax.set(xlabel='Time [s]', title='Spacing between Agents [m]')
ax.set_ylabel('Mean Distance [m]', color = 'g')
ax.tick_params(axis='y',colors ='green')
ax.set_xlim([0, Tf])
ax.set_ylim([0, 40])
total_e = np.sqrt(np.sum(cmds_all**2))
# set second axis
ax2 = ax.twinx()
ax2.set_xlim([0, Tf])
ax2.set_ylim([0, 100])
ax2.plot(t_all[start::],metrics_order_all[start::,10], color='tab:blue', linestyle = '-')
ax2.set_ylabel('Number of Connections', color='tab:blue')
ax2.tick_params(axis='y',colors ='tab:blue')
#ax2.invert_yaxis()
ax.legend(['Within Range', 'Oustide Range'], loc = 'upper left')
ax.grid()
#fig.savefig("test.png")
plt.show()
#%% Save stuff
pickle_out = open("Data/t_all.pickle","wb")
pickle.dump(t_all, pickle_out)
pickle_out.close()
pickle_out = open("Data/cmds_all.pickle","wb")
pickle.dump(cmds_all, pickle_out)
pickle_out.close()
pickle_out = open("Data/states_all.pickle","wb")
pickle.dump(states_all, pickle_out)
pickle_out.close()
pickle_out = open("Data/targets_all.pickle","wb")
pickle.dump(targets_all, pickle_out)
pickle_out.close()
pickle_out = open("Data/obstacles_all.pickle","wb")
pickle.dump(obstacles_all, pickle_out)
pickle_out.close()
pickle_out = open("Data/centroid_all.pickle","wb")
pickle.dump(centroid_all, pickle_out)
pickle_out = open("Data/lemni_all.pickle","wb")
pickle.dump(lemni_all, pickle_out)
pickle_out.close()